BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37940239)

  • 1. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review.
    Radoor S; Karayil J; Jayakumar A; Kandel DR; Kim JT; Siengchin S; Lee J
    Carbohydr Polym; 2024 Jan; 323():121339. PubMed ID: 37940239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications.
    Rana AK; Gupta VK; Hart P; Thakur VK
    Environ Res; 2024 Feb; 243():117889. PubMed ID: 38086501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium alginate hydrogel-encapsulated trans-anethole based polymer: Synthesis and applications as an eradicator of metals and dyes from wastewater.
    Raza S; Ghasali E; Hayat A; Zhang P; Orooji Y; Lin H
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127153. PubMed ID: 37778574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric hydrogels-based materials for wastewater treatment.
    Ahmaruzzaman M; Roy P; Bonilla-Petriciolet A; Badawi M; Ganachari SV; Shetti NP; Aminabhavi TM
    Chemosphere; 2023 Aug; 331():138743. PubMed ID: 37105310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan Hydrogels for Water Purification Applications.
    Chelu M; Musuc AM; Popa M; Calderon Moreno JM
    Gels; 2023 Aug; 9(8):. PubMed ID: 37623119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review.
    Saravanan A; Thamarai P; Kumar PS; Rangasamy G
    Chemosphere; 2022 Dec; 308(Pt 2):136368. PubMed ID: 36088969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview.
    Sharma R; Nath PC; Mohanta YK; Bhunia B; Mishra B; Sharma M; Suri S; Bhaswant M; Nayak PK; Sridhar K
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128517. PubMed ID: 38040157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose-Based Hydrogels for Wastewater Treatment: A Focus on Metal Ions Removal.
    Persano F; Malitesta C; Mazzotta E
    Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jackfruit peel cellulose nanocrystal - Alginate hydrogel for doripenem adsorption and release study.
    Nyoo Putro J; Soetaredjo FE; Santoso SP; Irawaty W; Yuliana M; Wijaya CJ; Saptoro A; Sunarso J; Ismadji S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128502. PubMed ID: 38040139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch-based hydrogels for environmental applications: A review.
    Dong Y; Ghasemzadeh M; Khorsandi Z; Sheibani R; Nasrollahzadeh M
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131956. PubMed ID: 38692526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review.
    Nasrollahzadeh M; Sajjadi M; Iravani S; Varma RS
    Carbohydr Polym; 2021 Jan; 251():116986. PubMed ID: 33142558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review.
    Akter M; Bhattacharjee M; Dhar AK; Rahman FBA; Haque S; Rashid TU; Kabir SMF
    Gels; 2021 Mar; 7(1):. PubMed ID: 33803815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications.
    Tan J; Luo Y; Guo Y; Zhou Y; Liao X; Li D; Lai X; Liu Y
    Int J Biol Macromol; 2023 Jun; 239():124275. PubMed ID: 37011751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water.
    Guo M; Wang J; Zhang C; Zhang X; Xia C; Lin H; Lin CY; Lam SS
    Environ Res; 2022 Nov; 214(Pt 2):113863. PubMed ID: 35841969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals - A review.
    Garba ZN; Lawan I; Zhou W; Zhang M; Wang L; Yuan Z
    Sci Total Environ; 2020 May; 717():135070. PubMed ID: 31839314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels.
    Shojaeiarani J; Bajwa D; Shirzadifar A
    Carbohydr Polym; 2019 Jul; 216():247-259. PubMed ID: 31047064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharide-Based Hydrogels Derived from Cellulose: The Architecture Change from Nanofibers to Hydrogels for a Putative Dual Function in Dye Wastewater Treatment.
    Cai J; Zhang D; Xu W; Ding WP; Zhu ZZ; He JR; Cheng SY
    J Agric Food Chem; 2020 Sep; 68(36):9725-9732. PubMed ID: 32786859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance.
    Kasbaji M; Mennani M; Grimi N; Oubenali M; Mbarki M; El Zakhem H; Moubarik A
    Int J Biol Macromol; 2023 Jun; 239():124288. PubMed ID: 37023876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically stable core-shell cellulose nanofibril/sodium alginate hydrogel beads with superior cu(II) removal capacity.
    Chen K; Qin F; Fang Z; Li G; Zhou J; Qiu X
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1353-1363. PubMed ID: 36150570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater.
    Ghiorghita CA; Dinu MV; Lazar MM; Dragan ES
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.