These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37940629)

  • 1. Bidirectional Confined Redox Catalysis Manipulated Quasi-Solid Iodine Conversion for Shuttle-Free Solid-State Zn-I
    Wang M; Ma J; Zhang H; Fu L; Li X; Lu K
    Small; 2024 Mar; 20(12):e2307021. PubMed ID: 37940629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery.
    Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K
    ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable Electrolytic Zn-I
    Wang Y; Jin X; Xiong J; Zhu Q; Li Q; Wang R; Li J; Fan Y; Zhao Y; Sun X
    Adv Mater; 2024 May; ():e2404093. PubMed ID: 38717804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities.
    Ma L; Ying Y; Chen S; Huang Z; Li X; Huang H; Zhi C
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3791-3798. PubMed ID: 33314550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional manipulation of iodine redox kinetics in aqueous Fe-I
    Zhang W; Wang M; Zhang H; Fu L; Zhang W; Yuan Y; Lu K
    Chem Sci; 2023 Nov; 14(44):12730-12738. PubMed ID: 38020388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries.
    Zhang SJ; Hao J; Li H; Zhang PF; Yin ZW; Li YY; Zhang B; Lin Z; Qiao SZ
    Adv Mater; 2022 Jun; 34(23):e2201716. PubMed ID: 35435291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts.
    Yang X; Fan H; Hu F; Chen S; Yan K; Ma L
    Nanomicro Lett; 2023 May; 15(1):126. PubMed ID: 37209237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A four-electron Zn-I
    Zou Y; Liu T; Du Q; Li Y; Yi H; Zhou X; Li Z; Gao L; Zhang L; Liang X
    Nat Commun; 2021 Jan; 12(1):170. PubMed ID: 33419999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Janus Separator based on Cation Exchange Resin and Fe Nanoparticles-decorated Single-wall Carbon Nanotubes with Triply Synergistic Effects for High-areal Capacity Zn-I
    Kang Y; Chen G; Hua H; Zhang M; Yang J; Lin P; Yang H; Lv Z; Wu Q; Zhao J; Yang Y
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202300418. PubMed ID: 36941210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Interfacial Gelation toward Shuttle-Free and Dendrite-Free Zn-Iodine Batteries.
    Zhang SJ; Hao J; Wu H; Chen Q; Ye C; Qiao SZ
    Adv Mater; 2024 Jul; ():e2404011. PubMed ID: 38970531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deploying Cationic Cellulose Nanofiber Confinement to Enable High Iodine Loadings Towards High Energy and High-Temperature Zn-I
    Li Z; Cao W; Hu T; Hu Y; Zhang R; Cui H; Mo F; Liu C; Zhi C; Liang G
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317652. PubMed ID: 38086771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Lasting Zinc-Iodine Batteries with Ultrahigh Areal Capacity and Boosted Rate Capability Enabled by Nickel Single-Atom Electrocatalysts.
    Ma L; Zhu G; Wang Z; Zhu A; Wu K; Peng B; Xu J; Wang D; Jin Z
    Nano Lett; 2023 Jun; 23(11):5272-5280. PubMed ID: 37260235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triiodide-in-Iodine Networks Stabilized by Quaternary Ammonium Cations as Accelerants for Electrode Kinetics of Iodide Oxidation in Aqueous Media.
    Kim H; Kim KM; Ryu J; Ki S; Sohn D; Chae J; Chang J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12168-12179. PubMed ID: 35254047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-Solid Sulfur Conversion for Energetic All-Solid-State Na-S Battery.
    Zhang H; Wang M; Song B; Huang XL; Zhang W; Zhang E; Cheng Y; Lu K
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202402274. PubMed ID: 38415322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restraining the shuttle effect of polyiodides and modulating the deposition of zinc ions to enhance the cycle lifespan of aqueous Zn-I
    Yue Q; Wan Y; Li X; Zhao Q; Gao T; Deng G; Li B; Xiao D
    Chem Sci; 2024 Apr; 15(15):5711-5722. PubMed ID: 38638220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous Aromatic Frameworks Enabling Polyiodide Confinement toward High Capacity and Long Lifespan Zinc-Iodine Batteries.
    Hu J; Zhang Z; Deng T; Cui FC; Shi X; Tian Y; Zhu G
    Adv Mater; 2024 Jul; 36(29):e2401091. PubMed ID: 38713921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High-Capacity and Stable Na-S Battery.
    Zhang H; Song B; Zhang W; An B; Fu L; Lu S; Cheng Y; Chen Q; Lu K
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202217009. PubMed ID: 36494321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hetero-Polyionic Hydrogels Enable Dendrites-Free Aqueous Zn-I
    Yang JL; Yu Z; Wu J; Li J; Chen L; Xiao T; Xiao T; Cai DQ; Liu K; Yang P; Fan HJ
    Adv Mater; 2023 Nov; 35(44):e2306531. PubMed ID: 37608787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Armoring the cathode with starch gel enables Shuttle-Free Zinc-Iodine batteries.
    Wang N; Ma Y; Chang Y; Feng L; Liu H; Li B; Li W; Liu Y; Han G
    J Colloid Interface Sci; 2024 Jul; 665():491-499. PubMed ID: 38537593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.