BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37940736)

  • 1. Toxic Tire Wear Compounds (6PPD-Q and 4-ADPA) Detected in Airborne Particulate Matter Along a Highway in Mississippi, USA.
    Olubusoye BS; Cizdziel JV; Bee M; Moore MT; Pineda M; Yargeau V; Bennett ER
    Bull Environ Contam Toxicol; 2023 Nov; 111(6):68. PubMed ID: 37940736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and risks of 23 tire additives and their transformation products in an urban water system.
    Zhang HY; Huang Z; Liu YH; Hu LX; He LY; Liu YS; Zhao JL; Ying GG
    Environ Int; 2023 Jan; 171():107715. PubMed ID: 36577297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid generation of aged tire-wear particles using dry-, wet-, and cryo-milling for ecotoxicity testing.
    Shin H; Jeong S; Hong J; Wi E; Park E; Yang SI; Kwon JT; Lee H; Lee J; Kim Y
    Environ Pollut; 2023 Aug; 330():121787. PubMed ID: 37156438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements.
    Mitchell CJ; Jayakaran AD
    Sci Total Environ; 2024 Jan; 908():168236. PubMed ID: 37939940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of the concentration of nano‑carbon black originating from tire-wear particles in the road dust.
    Kim J; Wi E; Moon H; Son H; Hong J; Park E; Kwon JT; Seo DY; Lee H; Kim Y
    Sci Total Environ; 2022 Oct; 842():156830. PubMed ID: 35738373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings.
    Jeong Y; Lee S; Woo SH
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of particulate matter from asphalt pavement and tire of a moving bus through driving tests in city road and proving ground.
    Chae E; Bae SH; Lee SW; Yun JH; Choi SS
    Environ Pollut; 2024 Mar; 344():123336. PubMed ID: 38211876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals.
    Li K; Yu J; Kong D; Chen X; Peng Y; Wang L
    Chemosphere; 2023 Dec; 343():140256. PubMed ID: 37742763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the concentration of nano-carbon black in tire-wear particles using emission factors of PM
    Kim J; Park E; Moon H; Son H; Hong J; Wi E; Kwon JT; Seo DY; Lee H; Kim Y
    Chemosphere; 2022 Sep; 303(Pt 1):134976. PubMed ID: 35595106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions.
    Woo SH; Jang H; Mun SH; Lim Y; Lee S
    Sci Total Environ; 2022 Sep; 838(Pt 4):156548. PubMed ID: 35688251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed.
    Johannessen C; Helm P; Lashuk B; Yargeau V; Metcalfe CD
    Arch Environ Contam Toxicol; 2022 Feb; 82(2):171-179. PubMed ID: 34347118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air monitoring of tire-derived chemicals in global megacities using passive samplers.
    Johannessen C; Saini A; Zhang X; Harner T
    Environ Pollut; 2022 Dec; 314():120206. PubMed ID: 36152723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier.
    Rausch J; Jaramillo-Vogel D; Perseguers S; Schnidrig N; Grobéty B; Yajan P
    Sci Total Environ; 2022 Jan; 803():149832. PubMed ID: 34525712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk implications induced by behaviors of artificial and pavement-generated TWPs in river water: Role of particle-self properties and incubation aging.
    Li K; Hao W; Liu C
    Environ Pollut; 2024 Feb; 343():123277. PubMed ID: 38163629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Formation of 6PPD-Q during the Aging of Tire Wear Particles in Anaerobic Flooded Soils: The Role of Iron Reduction and Environmentally Persistent Free Radicals.
    Xu Q; Li G; Fang L; Sun Q; Han R; Zhu Z; Zhu YG
    Environ Sci Technol; 2023 Apr; 57(14):5978-5987. PubMed ID: 36992570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment.
    Järlskog I; Jaramillo-Vogel D; Rausch J; Gustafsson M; Strömvall AM; Andersson-Sköld Y
    Environ Int; 2022 Dec; 170():107618. PubMed ID: 36356554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of tire wear particles by employing different cross-validation techniques: FTIR-ATR Micro-FTIR, Pyr-GC/MS, and SEM.
    Rosso B; Gregoris E; Litti L; Zorzi F; Fiorini M; Bravo B; Barbante C; Gambaro A; Corami F
    Environ Pollut; 2023 Jun; 326():121511. PubMed ID: 36967009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of selected tire wear compounds in urban receiving waters.
    Johannessen C; Helm P; Metcalfe CD
    Environ Pollut; 2021 Oct; 287():117659. PubMed ID: 34426371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone.
    Hu X; Zhao HN; Tian Z; Peter KT; Dodd MC; Kolodziej EP
    Environ Sci Process Impacts; 2023 May; 25(5):901-911. PubMed ID: 37042393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake, Metabolism
    Castan S; Sherman A; Peng R; Zumstein MT; Wanek W; Hüffer T; Hofmann T
    Environ Sci Technol; 2023 Jan; 57(1):168-178. PubMed ID: 36576319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.