These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37941174)
1. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons. Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174 [TBL] [Abstract][Full Text] [Related]
2. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling. Smith AJJ; Lemaire ED; Nantel J PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
4. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
6. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Hayes SC; White M; White HSF; Vanicek N Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685 [TBL] [Abstract][Full Text] [Related]
7. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking. Park JH; Lee Y; Madinei S; Kim S; Nussbaum MA; Srinivasan D Ann Biomed Eng; 2022 Aug; 50(8):964-977. PubMed ID: 35478066 [TBL] [Abstract][Full Text] [Related]
8. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton. Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R Front Robot AI; 2019; 6():36. PubMed ID: 33501052 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
10. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related]
11. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds. Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372 [TBL] [Abstract][Full Text] [Related]
12. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
13. Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios. Goffredo M; Romano P; Infarinato F; Cioeta M; Franceschini M; Galafate D; Iacopini R; Pournajaf S; Ottaviani M Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746315 [TBL] [Abstract][Full Text] [Related]
14. Lower limb angular velocity during walking at various speeds. Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929 [TBL] [Abstract][Full Text] [Related]
15. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
16. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance. Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931 [TBL] [Abstract][Full Text] [Related]
17. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training. Changcheng C; Li YR; Chen CT Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539 [TBL] [Abstract][Full Text] [Related]
18. Slower than normal walking speeds involve a pattern shift in joint and temporal coordination contributions. Little VL; McGuirk TE; Patten C Exp Brain Res; 2019 Nov; 237(11):2973-2982. PubMed ID: 31511954 [TBL] [Abstract][Full Text] [Related]
19. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
20. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury. Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ Front Neurorobot; 2017; 11():30. PubMed ID: 28676752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]