These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37941182)

  • 1. Predictive Control of Peak Achilles Tendon Force in a Simulated System of the Human Ankle Joint with a Parallel Artificial Actuator During Hopping.
    Nabipour M; Sawicki GS; Sartori M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated Knee Joint Kinetics and Reduced Ankle Kinetics Are Present During Jogging and Hopping After Achilles Tendon Ruptures.
    Willy RW; Brorsson A; Powell HC; Willson JD; Tranberg R; Grävare Silbernagel K
    Am J Sports Med; 2017 Apr; 45(5):1124-1133. PubMed ID: 28186834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ; Hicks JL; Delp SL; Sawicki GS
    J Exp Biol; 2014 Nov; 217(Pt 22):4018-28. PubMed ID: 25278469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping.
    Farris DJ; Robertson BD; Sawicki GS
    J Appl Physiol (1985); 2013 Sep; 115(5):579-85. PubMed ID: 23788578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic ankle exoskeletons influence soleus fascicle dynamics during unexpected perturbations.
    Williamson JL; Lichtwark GA; Dick TJM
    J Biomech; 2023 Oct; 159():111775. PubMed ID: 37672852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Achilles Tendon Stiffness Disrupts Calf Muscle Neuromechanics in Elderly Gait.
    Krupenevich RL; Beck ON; Sawicki GS; Franz JR
    Gerontology; 2022; 68(3):241-251. PubMed ID: 34274923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Model to Estimate Plantarflexor Muscle-Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons.
    Sawicki GS; Khan NS
    IEEE Trans Biomed Eng; 2016 May; 63(5):914-923. PubMed ID: 26485350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Achilles tendon force with load carriage and exosuit assistance.
    Schmitz DG; Nuckols RW; Lee S; Akbas T; Swaminathan K; Walsh CJ; Thelen DG
    Sci Robot; 2022 Oct; 7(71):eabq1514. PubMed ID: 36260697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of human walking for exoskeletal support.
    van Dijk W; van der Kooij H; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650394. PubMed ID: 24187213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patellofemoral Joint and Achilles Tendon Loads During Overground and Treadmill Running.
    Willy RW; Halsey L; Hayek A; Johnson H; Willson JD
    J Orthop Sports Phys Ther; 2016 Aug; 46(8):664-72. PubMed ID: 27170525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do athletes alter their running mechanics after an Achilles tendon rupture?
    Jandacka D; Silvernail JF; Uchytil J; Zahradnik D; Farana R; Hamill J
    J Foot Ankle Res; 2017; 10():53. PubMed ID: 29209417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human leg model predicts ankle muscle-tendon morphology, state, roles and energetics in walking.
    Krishnaswamy P; Brown EN; Herr HM
    PLoS Comput Biol; 2011 Mar; 7(3):e1001107. PubMed ID: 21445231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.