These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37941205)

  • 1. A Method of Detecting Human Movement Intentions in Real Environments.
    Liu YX; Wan ZY; Wang R; Gutierrez-Farewik EM
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion.
    Liu YX; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1089-1098. PubMed ID: 34097615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee.
    Bruinsma J; Carloni R
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1079-1088. PubMed ID: 34097612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stair Recognition for Robotic Exoskeleton Control using Computer Vision and Deep Learning.
    Kurbis AG; Laschowski B; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Terrains Assistive Force Parameter Optimization Method for Soft Exoskeleton.
    Sun L; Jing J; Li C; Lu R
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2028-2036. PubMed ID: 37053053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection.
    Zhang X; Tricomi E; Missiroli F; Lotti N; Ma X; Masia L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Single Leg Knee Exoskeleton and Sensing Knee Center of Rotation Change for Intention Detection.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons.
    Gao F; Liu G; Liang F; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU.
    Han Y; Liu C; Yan L; Ren L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent Eye-Controlled Electric Wheelchair Based on Estimating Visual Intentions Using One-Dimensional Convolutional Neural Network and Long Short-Term Memory.
    Higa S; Yamada K; Kamisato S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.