These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37941208)

  • 1. Characterizing Eye Gaze for Assistive Device Control.
    Loke LYC; Barsoum DR; Murphey TD; Argall BD
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic review investigating outcome measures and uptake barriers when children and youth with complex disabilities use eye gaze assistive technology.
    Perfect E; Hoskin E; Noyek S; Davies TC
    Dev Neurorehabil; 2020 Apr; 23(3):145-159. PubMed ID: 30987518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing participation in computer activities using eye-gaze assistive technology for children with complex needs.
    Hsieh YH; Granlund M; Odom SL; Hwang AW; Hemmingsson H
    Disabil Rehabil Assist Technol; 2024 Feb; 19(2):492-505. PubMed ID: 35861506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of feedback and target size on eye gaze accuracy in an off-screen task.
    Sakamaki I; Adams K; Tavakoli M; Wiebe SA
    Disabil Rehabil Assist Technol; 2021 Oct; 16(7):769-779. PubMed ID: 32100583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye gaze performance for children with severe physical impairments using gaze-based assistive technology-A longitudinal study.
    Borgestig M; Sandqvist J; Parsons R; Falkmer T; Hemmingsson H
    Assist Technol; 2016; 28(2):93-102. PubMed ID: 26496529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaze-Based Assistive Technology - Usefulness in Clinical Assessments.
    Wandin H
    Stud Health Technol Inform; 2017; 242():1113-1118. PubMed ID: 28873939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze-based assistive technology used in daily life by children with severe physical impairments - parents' experiences.
    Borgestig M; Rytterström P; Hemmingsson H
    Dev Neurorehabil; 2017 Jul; 20(5):301-308. PubMed ID: 27537982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parent Perception of Two Eye-Gaze Control Technology Systems in Young Children with Cerebral Palsy: Pilot Study.
    Karlsson P; Wallen M
    Stud Health Technol Inform; 2017; 242():1095-1102. PubMed ID: 28873936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teachers' Experiences of Hope Using Eye Gaze-Controlled Computers.
    Rytterström P
    Stud Health Technol Inform; 2017; 242():1089-1094. PubMed ID: 28873935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hope and Technology: Other-Oriented Hope Related to Eye Gaze Technology for Children with Severe Disabilities.
    Rytterström P; Borgestig M; Hemmingsson H
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31091645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living.
    Sunny MSH; Zarif MII; Rulik I; Sanjuan J; Rahman MH; Ahamed SI; Wang I; Schultz K; Brahmi B
    J Neuroeng Rehabil; 2021 Dec; 18(1):173. PubMed ID: 34922590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing gaze position signals and synthesizing noise during fixations in eye-tracking data.
    Niehorster DC; Zemblys R; Beelders T; Holmqvist K
    Behav Res Methods; 2020 Dec; 52(6):2515-2534. PubMed ID: 32472501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.
    Sesin A; Adjouadi M; Cabrerizo M; Ayala M; Barreto A
    J Rehabil Res Dev; 2008; 45(6):801-17. PubMed ID: 19009467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usability of Eye-Gaze Controlled Computers in Sweden: A Total Population Survey.
    Hemmingsson H; Borgestig M
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32138358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze Point Tracking Based on a Robotic Body-Head-Eye Coordination Method.
    Feng X; Wang Q; Cong H; Zhang Y; Qiu M
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The psychosocial impact of eye-gaze assistive technology on everyday life of children and adults.
    Andreassen M; Borgestig M; Hemmingsson H
    Ann Med; 2024 Dec; 56(1):2318397. PubMed ID: 38442288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessible digital assessments of temporal, spatial, or movement concepts for profoundly motor impaired and non-verbal individuals: a pilot study.
    Moseley M; Howat L; McLoughlin L; Gilling S; Lewis D
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):350-360. PubMed ID: 31729265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing eye-gaze positions of people with severe motor dysfunction: Novel scoring metrics using eye-tracking and video analysis.
    Okamoto M; Kojima R; Ueda A; Suzuki M; Okuno Y
    PLoS One; 2022; 17(8):e0265623. PubMed ID: 36044416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation on the feasibility of uncalibrated and unconstrained gaze tracking for human assistive applications by using head pose estimation.
    Cazzato D; Leo M; Distante C
    Sensors (Basel); 2014 May; 14(5):8363-79. PubMed ID: 24824369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.