These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37941224)
1. Attention-Based Deep Recurrent Neural Network to Estimate Knee Angle During Walking from Lower-Limb EMG. Abdelhady M; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941224 [TBL] [Abstract][Full Text] [Related]
2. Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy. Abdelhady M; Damiano DL; Bulea TC Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000996 [TBL] [Abstract][Full Text] [Related]
3. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Lerner ZF; Damiano DL; Bulea TC Sci Transl Med; 2017 Aug; 9(404):. PubMed ID: 28835518 [TBL] [Abstract][Full Text] [Related]
4. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control. Chen J; Damiano DL; Lerner ZF; Bulea TC IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725 [TBL] [Abstract][Full Text] [Related]
5. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
6. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
9. A practical strategy for sEMG-based knee joint moment estimation during gait and its validation in individuals with cerebral palsy. Kwon S; Park HS; Stanley CJ; Kim J; Kim J; Damiano DL IEEE Trans Biomed Eng; 2012 May; 59(5):1480-7. PubMed ID: 22410952 [TBL] [Abstract][Full Text] [Related]
10. Maturation of feedforward toe walking motor program is impaired in children with cerebral palsy. Lorentzen J; Willerslev-Olsen M; Hüche Larsen H; Farmer SF; Nielsen JB Brain; 2019 Mar; 142(3):526-541. PubMed ID: 30726881 [TBL] [Abstract][Full Text] [Related]
11. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation. Lerner ZF; Damiano DL; Bulea TC Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959 [TBL] [Abstract][Full Text] [Related]
12. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O Clin Biomech (Bristol); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949 [TBL] [Abstract][Full Text] [Related]
13. Design and Implementation of a Portable Knee Actuator for the Improvement of Crouch Gait in Children with Cerebral Palsy. Snodgrass J; Yan S; Lim H; Hameedduddin I; Wu M Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082689 [TBL] [Abstract][Full Text] [Related]
14. Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control. Bulea TC; Lerner ZF; Damiano DL Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2801-2804. PubMed ID: 30440983 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer. Xie H; Li G; Zhao X; Li F Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505 [TBL] [Abstract][Full Text] [Related]
16. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
17. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
18. Muscle synergy-informed neuromusculoskeletal modelling to estimate knee contact forces in children with cerebral palsy. Rabbi MF; Davico G; Lloyd DG; Carty CP; Diamond LE; Pizzolato C Biomech Model Mechanobiol; 2024 Jun; 23(3):1077-1090. PubMed ID: 38459157 [TBL] [Abstract][Full Text] [Related]
19. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy. Lerner ZF; Harvey TA; Lawson JL Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030 [TBL] [Abstract][Full Text] [Related]
20. Predictors of Walking Efficiency in Children With Cerebral Palsy: Lower-Body Joint Angles, Moments, and Power. Noorkoiv M; Lavelle G; Theis N; Korff T; Kilbride C; Baltzopoulos V; Shortland A; Levin W; Ryan JM Phys Ther; 2019 Jun; 99(6):711-720. PubMed ID: 31155663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]