These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
4. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
5. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton. Jebri A; Madani T; Djouani K IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723 [TBL] [Abstract][Full Text] [Related]
6. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
7. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists. Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178 [TBL] [Abstract][Full Text] [Related]
9. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. Proietti T; Crocher V; Roby-Brami A; Jarrasse N IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194 [TBL] [Abstract][Full Text] [Related]
10. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
11. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton. Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
13. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related]
14. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
15. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
16. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
17. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
18. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
19. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton. Zhou X; Chen X J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567 [TBL] [Abstract][Full Text] [Related]
20. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]