These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 37941272)
1. Momentum-Based Balance Control of a Lower-Limb Exoskeleton During Stance. Vallinas A; Keemink A; Bayon C; van Asseldonk E; van der Kooij H IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941272 [TBL] [Abstract][Full Text] [Related]
2. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
3. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related]
4. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients. Ma Q; Ji L; Wang R IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112 [TBL] [Abstract][Full Text] [Related]
5. Effects of a powered ankle-foot orthosis on perturbed standing balance. Emmens AR; van Asseldonk EHF; van der Kooij H J Neuroeng Rehabil; 2018 Jun; 15(1):50. PubMed ID: 29914505 [TBL] [Abstract][Full Text] [Related]
6. Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm. Guo Y; He M; Tong X; Zhang M; Huang L Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338759 [TBL] [Abstract][Full Text] [Related]
7. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
8. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches. Smith AJJ; Fournier BN; Nantel J; Lemaire ED J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865 [TBL] [Abstract][Full Text] [Related]
9. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot. Qin L; Ji H; Chen M; Wang K Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038 [TBL] [Abstract][Full Text] [Related]
10. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
11. Control of a lower limb exoskeleton using Learning from Demonstration and an iterative Linear Quadratic Regulator Controller: A simulation study. Goldfarb N; Zhou H; Bales C; Fischer GS Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4687-4693. PubMed ID: 34892259 [TBL] [Abstract][Full Text] [Related]
12. Blending control method of lower limb exoskeleton toward tripping-free stair climbing. Zhang ZW; Liu GF; Zheng TJ; Li HW; Zhao SK; Zhao J; Zhu YH ISA Trans; 2022 Dec; 131():610-627. PubMed ID: 35697540 [TBL] [Abstract][Full Text] [Related]
13. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER). Nasiri R; Dinovitzer H; Arami A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons. Chen X; Cheng X; Fong J; Oetomo D; Tan Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843 [TBL] [Abstract][Full Text] [Related]
15. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton. Calle-Siguencia J; Callejas-Cuervo M; García-Reino S Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340 [TBL] [Abstract][Full Text] [Related]
16. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
17. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. Wang Y; Wang H; Tian Y ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010 [TBL] [Abstract][Full Text] [Related]
18. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton. Riani A; Madani T; Hadri AE; Benallegue A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901 [TBL] [Abstract][Full Text] [Related]
19. Tripping Avoidance Lower Extremity Exoskeleton Based on Virtual Potential Field for Elderly People. Zhang Z; Li C; Zheng T; Li H; Zhao S; Zhao J; Zhu Y Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076576 [TBL] [Abstract][Full Text] [Related]
20. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]