These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37941294)

  • 1. Model-Based Upper-Limb Gravity Compensation Strategies for Active Dynamic Arm Supports.
    Manzano M; Guegan S; Le Breton R; Devigne L; Babel M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.
    Piovesan D; Pierobon A; Dizio P; Lackner JR
    J Biomech Eng; 2011 Mar; 133(3):031003. PubMed ID: 21303179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic Sequence Classification and the Relationship to Pitching Limb Torques.
    Scarborough DM; Linderman SE; Sanchez JE; Berkson EM
    Med Sci Sports Exerc; 2021 Feb; 53(2):351-359. PubMed ID: 32701873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel shoulder-elbow mechanism for increasing speed in a multijoint arm movement.
    Debicki DB; Watts S; Gribble PL; Hore J
    Exp Brain Res; 2010 Jun; 203(3):601-13. PubMed ID: 20454785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.
    Asmussen MJ; Bailey AZ; Nelson AJ
    Neuroscience; 2015 Dec; 311():268-83. PubMed ID: 26525892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying anti-gravity torques in the design of a powered exoskeleton.
    Ragonesi D; Agrawal S; Sample W; Rahman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7458-61. PubMed ID: 22256063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Comparisons Among Fastball, Slider, Curveball, and Changeup Pitch Types and Between Balls and Strikes in Professional Baseball Pitchers.
    Escamilla RF; Fleisig GS; Groeschner D; Akizuki K
    Am J Sports Med; 2017 Dec; 45(14):3358-3367. PubMed ID: 28968139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism for control of ball spin rate by the upper limb in baseball pitching based on singular value decomposition.
    Shibata S; Shimana T; Kado J; Kageyama M; Maeda A; Fujii M; Suzuki C
    J Biomech; 2023 May; 153():111603. PubMed ID: 37126885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL): a randomized controlled study.
    Longatelli V; Antonietti A; Biffi E; Diella E; D'Angelo MG; Rossini M; Molteni F; Bocciolone M; Pedrocchi A; Gandolla M
    J Neuroeng Rehabil; 2021 Jan; 18(1):4. PubMed ID: 33407580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
    Naito K; Takagi T; Kubota H; Maruyama T
    Hum Mov Sci; 2017 Aug; 54():363-376. PubMed ID: 28692836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of load on torques in point-to-point arm movements: a 3D model.
    Tibold R; Laczko J
    J Mot Behav; 2012; 44(5):341-50. PubMed ID: 22938084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of upper limb load intensity based on biomechanical methods].
    Li H; Li F; Yan Q; Wang Z; Wang CH
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Jun; 35(6):422-425. PubMed ID: 28780816
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.