BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37941438)

  • 41. Participation of metal transporters in cadmium transport from mother rat to fetus.
    Nakamura Y; Ohba K; Ohta H
    J Toxicol Sci; 2012; 37(5):1035-44. PubMed ID: 23038010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis.
    Blazquez AG; Briz O; Gonzalez-Sanchez E; Perez MJ; Ghanem CI; Marin JJ
    Toxicol Appl Pharmacol; 2014 May; 277(1):77-85. PubMed ID: 24631341
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cadmium induces inflammatory cytokines through activating Akt signaling in mouse placenta and human trophoblast cells.
    Hu J; Wang H; Hu YF; Xu XF; Chen YH; Xia MZ; Zhang C; Xu DX
    Placenta; 2018 May; 65():7-14. PubMed ID: 29908644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BCRP/ABCG2 in the placenta: expression, function and regulation.
    Mao Q
    Pharm Res; 2008 Jun; 25(6):1244-55. PubMed ID: 18202831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein.
    Lee YJ; Kusuhara H; Jonker JW; Schinkel AH; Sugiyama Y
    J Pharmacol Exp Ther; 2005 Jan; 312(1):44-52. PubMed ID: 15448171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maternal cadmium exposure during late pregnancy causes fetal growth restriction via inhibiting placental progesterone synthesis.
    Xiong YW; Zhu HL; Nan Y; Cao XL; Shi XT; Yi SJ; Feng YJ; Zhang C; Gao L; Chen YH; Xu DX; Wang H
    Ecotoxicol Environ Saf; 2020 Jan; 187():109879. PubMed ID: 31677567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic regulation of placental glucose transporters mediates maternal cadmium-induced fetal growth restriction.
    Xu P; Wu Z; Xi Y; Wang L
    Toxicology; 2016 Nov; 372():34-41. PubMed ID: 27931521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells.
    Mason CW; Lee GT; Dong Y; Zhou H; He L; Weiner CP
    Drug Metab Dispos; 2014 Dec; 42(12):2077-86. PubMed ID: 25261564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth impairment, increased placental glucose uptake and altered transplacental transport in VIP deficient pregnancies: Maternal vs. placental contributions.
    Merech F; Hauk V; Paparini D; Fernandez L; Naguila Z; Ramhorst R; Waschek J; Pérez Leirós C; Vota D
    Biochim Biophys Acta Mol Basis Dis; 2021 Oct; 1867(10):166207. PubMed ID: 34186168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression.
    Mangwiro YTM; Cuffe JSM; Mahizir D; Anevska K; Gravina S; Romano T; Moritz KM; Briffa JF; Wlodek ME
    J Physiol; 2019 Apr; 597(7):1905-1918. PubMed ID: 30734290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of the placental BCRP transporter by PPAR gamma.
    Lin Y; Bircsak KM; Gorczyca L; Wen X; Aleksunes LM
    J Biochem Mol Toxicol; 2017 May; 31(5):. PubMed ID: 27879033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cadmium exposure during pregnancy and lactation: materno-fetal and newborn repercussions of Cd(ii), and Cd-metallothionein complexes.
    Espart A; Artime S; Tort-Nasarre G; Yara-Varón E
    Metallomics; 2018 Oct; 10(10):1359-1367. PubMed ID: 30221266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of placental metallothionein in maternal to fetal transfer of cadmium in genetically altered mice.
    Lau JC; Joseph MG; Cherian MG
    Toxicology; 1998 May; 127(1-3):167-78. PubMed ID: 9699803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased placental nutrient transporter expression at midgestation after maternal growth hormone treatment in pigs: a placental mechanism for increased fetal growth.
    Tung E; Roberts CT; Heinemann GK; De Blasio MJ; Kind KL; van Wettere WH; Owens JA; Gatford KL
    Biol Reprod; 2012 Nov; 87(5):126. PubMed ID: 23018188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Layer II of placental syncytiotrophoblasts expresses MDR1 and BCRP at the apical membrane in rodents.
    Akashi T; Nishimura T; Takaki Y; Takahashi M; Shin BC; Tomi M; Nakashima E
    Reprod Toxicol; 2016 Oct; 65():375-381. PubMed ID: 27616577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction.
    Xu P; Guo H; Wang H; Lee SC; Liu M; Pan Y; Zheng J; Zheng K; Wang H; Xie Y; Bai X; Liu Y; Zhao M; Wang L
    Toxicology; 2019 Jul; 423():112-122. PubMed ID: 31152847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of the breast cancer resistance protein (ABCG2) in drug transport.
    Mao Q; Unadkat JD
    AAPS J; 2005 May; 7(1):E118-33. PubMed ID: 16146333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta.
    Pollex E; Lubetsky A; Koren G
    Placenta; 2008 Aug; 29(8):743-7. PubMed ID: 18558430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs.
    Eng ME; Bloise E; Matthews SG
    FASEB J; 2022 Apr; 36(4):e22245. PubMed ID: 35262963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemotherapy in pregnancy: exploratory study of the effects of paclitaxel on the expression of placental drug transporters.
    Berveiller P; Mir O; Degrelle SA; Tsatsaris V; Selleret L; Guibourdenche J; Evain-Brion D; Fournier T; Gil S
    Invest New Drugs; 2019 Oct; 37(5):1075-1085. PubMed ID: 30367323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.