BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37941440)

  • 1. Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease.
    Kaminski TW; Katoch O; Li Z; Hanway CB; Dubey RK; Alagbe A; Brzoska T; Zhang H; Sundd P; Kato GJ; Novelli EM; Pradhan-Sundd T
    Haematologica; 2024 May; 109(5):1535-1550. PubMed ID: 37941440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease.
    Nyffenegger N; Zennadi R; Kalleda N; Flace A; Ingoglia G; Buzzi RM; Doucerain C; Buehler PW; Schaer DJ; Dürrenberger F; Manolova V
    Blood; 2022 Aug; 140(7):769-781. PubMed ID: 35714304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-selectin deficiency promotes liver senescence in sickle cell disease mice.
    Vats R; Kaminski TW; Ju EM; Brozska T; Tutuncuoglu E; Tejero J; Novelli EM; Sundd P; Pradhan-Sundd T
    Blood; 2021 May; 137(19):2676-2680. PubMed ID: 33619560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired Bile Secretion Promotes Hepatobiliary Injury in Sickle Cell Disease.
    Vats R; Liu S; Zhu J; Mukhi D; Tutuncuoglu E; Cardenes N; Singh S; Brzoska T; Kosar K; Bamne M; Jonassaint J; Adebayo Michael A; Watkins SC; Hillery C; Ma X; Nejak-Bowen K; Rojas M; Gladwin MT; Kato GJ; Ramakrishnan S; Sundd P; Monga SP; Pradhan-Sundd T
    Hepatology; 2020 Dec; 72(6):2165-2181. PubMed ID: 32190913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2 activation in myeloid cells and endothelial cells differentially mitigates sickle cell disease pathology in mice.
    Keleku-Lukwete N; Suzuki M; Panda H; Otsuki A; Katsuoka F; Saito R; Saigusa D; Uruno A; Yamamoto M
    Blood Adv; 2019 Apr; 3(8):1285-1297. PubMed ID: 31015205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular pathophysiology of sickle cell disease.
    Connes P; Renoux C; Joly P; Nader E
    Presse Med; 2023 Dec; 52(4):104202. PubMed ID: 37944640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of hepatic dysfunction in sickle cell disease: lessons from Townes mouse model.
    Pradhan-Sundd T; Kato GJ; Novelli EM
    Am J Physiol Cell Physiol; 2022 Aug; 323(2):C494-C504. PubMed ID: 35759437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HO-1
    Liu Y; Jing F; Yi W; Mendelson A; Shi P; Walsh R; Friedman DF; Minniti C; Manwani D; Chou ST; Yazdanbakhsh K
    Blood; 2018 Apr; 131(14):1600-1610. PubMed ID: 29437594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia.
    Abdulmalik O; Darwish NHE; Muralidharan-Chari V; Taleb MA; Mousa SA
    Haematologica; 2022 Feb; 107(2):532-540. PubMed ID: 33567814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities.
    Alramadhani D; Aljahdali AS; Abdulmalik O; Pierce BD; Safo MK
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease.
    Demers M; Sturtevant S; Guertin KR; Gupta D; Desai K; Vieira BF; Li W; Hicks A; Ismail A; Gonçalves BP; Di Caprio G; Schonbrun E; Hansen S; Musayev FN; Safo MK; Wood DK; Higgins JM; Light DR
    Blood Adv; 2021 Mar; 5(5):1388-1402. PubMed ID: 33661300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sickle cell disease, vasculopathy, and therapeutics.
    Kassim AA; DeBaun MR
    Annu Rev Med; 2013; 64():451-66. PubMed ID: 23190149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiological characterization of the Townes mouse model for sickle cell disease.
    Alvarez-Argote J; Dlugi TA; Sundararajan T; Kleynerman A; Faber ML; McKillop WM; Medin JA
    Transl Res; 2023 Apr; 254():77-91. PubMed ID: 36323381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle cell diseases: What can nuclear medicine offer?
    Niccoli Asabella A; Altini C; Nappi AG; Lavelli V; Ferrari C; Marzullo A; Loiodice A; Rubini G
    Hell J Nucl Med; 2019; 22(1):2-3. PubMed ID: 30843001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction.
    Nader E; Conran N; Romana M; Connes P
    Compr Physiol; 2021 Apr; 11(2):1785-1803. PubMed ID: 33792905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiology of Sickle Cell Disease.
    Sundd P; Gladwin MT; Novelli EM
    Annu Rev Pathol; 2019 Jan; 14():263-292. PubMed ID: 30332562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MASP-2 and MASP-3 inhibitors block complement activation, inflammation, and microvascular stasis in a murine model of vaso-occlusion in sickle cell disease.
    Belcher JD; Nguyen J; Chen C; Abdulla F; Conglin R; Ivy ZK; Cummings J; Dudler T; Vercellotti GM
    Transl Res; 2022 Nov; 249():1-12. PubMed ID: 35878790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fucosylation inhibitor, 2-fluorofucose, inhibits vaso-occlusion, leukocyte-endothelium interactions and NF-ĸB activation in transgenic sickle mice.
    Belcher JD; Chen C; Nguyen J; Abdulla F; Nguyen P; Nguyen M; Okeley NM; Benjamin DR; Senter PD; Vercellotti GM
    PLoS One; 2015; 10(2):e0117772. PubMed ID: 25706118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking HbS Polymerization in SCD.
    Lettre G
    Cell; 2020 Mar; 180(5):819. PubMed ID: 32142671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.