These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 37941450)
1. SSLpheno: a self-supervised learning approach for gene-phenotype association prediction using protein-protein interactions and gene ontology data. Bi X; Liang W; Zhao Q; Wang J Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37941450 [TBL] [Abstract][Full Text] [Related]
2. Self-supervised driven consistency training for annotation efficient histopathology image analysis. Srinidhi CL; Kim SW; Chen FD; Martel AL Med Image Anal; 2022 Jan; 75():102256. PubMed ID: 34717189 [TBL] [Abstract][Full Text] [Related]
3. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
4. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations. Smaili FZ; Gao X; Hoehndorf R Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999 [TBL] [Abstract][Full Text] [Related]
5. DeepPheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier. Kulmanov M; Hoehndorf R PLoS Comput Biol; 2020 Nov; 16(11):e1008453. PubMed ID: 33206638 [TBL] [Abstract][Full Text] [Related]
6. Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes. Pourreza Shahri M; Kahanda I BMC Bioinformatics; 2021 Oct; 22(1):500. PubMed ID: 34656098 [TBL] [Abstract][Full Text] [Related]
7. ProteinMAE: masked autoencoder for protein surface self-supervised learning. Yuan M; Shen A; Fu K; Guan J; Ma Y; Qiao Q; Wang M Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38019955 [TBL] [Abstract][Full Text] [Related]
8. Improving prediction for medical institution with limited patient data: Leveraging hospital-specific data based on multicenter collaborative research network. Li J; Tian Y; Li R; Zhou T; Li J; Ding K; Li J Artif Intell Med; 2021 Mar; 113():102024. PubMed ID: 33685587 [TBL] [Abstract][Full Text] [Related]
9. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification. Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262 [TBL] [Abstract][Full Text] [Related]
10. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations. Liu L; Mamitsuka H; Zhu S Bioinformatics; 2022 Jan; 38(3):799-808. PubMed ID: 34672333 [TBL] [Abstract][Full Text] [Related]
11. Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images. Li L; Liang Y; Shao M; Lu S; Liao S; Ouyang D Comput Biol Med; 2023 Feb; 153():106482. PubMed ID: 36586231 [TBL] [Abstract][Full Text] [Related]
12. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction. Zheng J; Qian Y; He J; Kang Z; Deng L J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124 [TBL] [Abstract][Full Text] [Related]
13. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection. Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462 [No Abstract] [Full Text] [Related]
14. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. Otálora S; Marini N; Müller H; Atzori M BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886 [TBL] [Abstract][Full Text] [Related]
15. CS-CO: A Hybrid Self-Supervised Visual Representation Learning Method for H&E-stained Histopathological Images. Yang P; Yin X; Lu H; Hu Z; Zhang X; Jiang R; Lv H Med Image Anal; 2022 Oct; 81():102539. PubMed ID: 35926337 [TBL] [Abstract][Full Text] [Related]
16. Weakly Semi-supervised phenotyping using Electronic Health records. Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111 [TBL] [Abstract][Full Text] [Related]
17. Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network. Lei T; Zhang D; Du X; Wang X; Wan Y; Nandi AK IEEE Trans Med Imaging; 2023 May; 42(5):1265-1277. PubMed ID: 36449588 [TBL] [Abstract][Full Text] [Related]
18. SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Tu Y; Lei H; Shen HB; Yang Y Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152293 [TBL] [Abstract][Full Text] [Related]
19. Transformer-based unsupervised contrastive learning for histopathological image classification. Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419 [TBL] [Abstract][Full Text] [Related]
20. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]