These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37941955)
1. Graphene oxide nanosheets augment silk fibroin aerogels for enhanced water stability and oil adsorption. Machnicki CE; DuBois EM; Fay M; Shrestha S; Saleeba ZSSL; Hruska AM; Ahmed Z; Srivastava V; Chen PY; Wong IY Nanoscale Adv; 2023 Nov; 5(22):6078-6092. PubMed ID: 37941955 [TBL] [Abstract][Full Text] [Related]
2. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
3. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. Bandar Abadi M; Weissing R; Wilhelm M; Demidov Y; Auer J; Ghazanfari S; Anasori B; Mathur S; Maleki H ACS Appl Mater Interfaces; 2021 Jul; 13(29):34996-35007. PubMed ID: 34259501 [TBL] [Abstract][Full Text] [Related]
4. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. Wang NN; Wang H; Wang YY; Wei YH; Si JY; Yuen ACY; Xie JS; Yu B; Zhu SE; Lu HD; Yang W; Chan QN; Yeoh GH ACS Appl Mater Interfaces; 2019 Oct; 11(43):40512-40523. PubMed ID: 31577120 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic Free-Standing Aerogels Based on Graphene/Silk for Pressure Sensing and Efficient Adsorption. Ma X; Kong Z; Gao Y; Bai Y; Wang W; Tan H; Cai X; Cai J ACS Appl Mater Interfaces; 2023 Jun; 15(25):30630-30642. PubMed ID: 37322613 [TBL] [Abstract][Full Text] [Related]
6. Superelastic and multifunctional fibroin aerogels from multiscale silk micro-nanofibrils exfoliated via deep eutectic solvent. Yang H; Wang P; Yang Q; Wang D; Wang Y; Kuai L; Wang Z Int J Biol Macromol; 2023 Jan; 224():1412-1422. PubMed ID: 36550790 [TBL] [Abstract][Full Text] [Related]
7. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. Wang Z; Yang H; Li Y; Zheng X ACS Appl Mater Interfaces; 2020 Apr; 12(13):15726-15736. PubMed ID: 32167746 [TBL] [Abstract][Full Text] [Related]
8. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation. Ke W; Ge F; Shi X; Zhang Y; Wu T; Zhu X; Cheng Y; Shi Y; Wang Z; Yuan L; Yan Y Int J Biol Macromol; 2024 Mar; 260(Pt 1):129245. PubMed ID: 38191109 [TBL] [Abstract][Full Text] [Related]
9. Adsorption Behavior of Silk Fibroin on Amphiphilic Graphene Oxide. Tadepalli S; Hamper H; Park SH; Cao S; Naik RR; Singamaneni S ACS Biomater Sci Eng; 2016 Jul; 2(7):1084-1092. PubMed ID: 33445236 [TBL] [Abstract][Full Text] [Related]
10. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
11. A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. Nong Y; Ren Y; Wang P; Zhou M; Yu Y; Yuan J; Xu B; Wang Q J Colloid Interface Sci; 2021 Dec; 603():518-529. PubMed ID: 34216949 [TBL] [Abstract][Full Text] [Related]
13. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels. Ha H; Shanmuganathan K; Ellison CJ ACS Appl Mater Interfaces; 2015 Mar; 7(11):6220-9. PubMed ID: 25714662 [TBL] [Abstract][Full Text] [Related]
14. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Xu Z; Zhou H; Tan S; Jiang X; Wu W; Shi J; Chen P Beilstein J Nanotechnol; 2018; 9():508-519. PubMed ID: 29527428 [TBL] [Abstract][Full Text] [Related]
15. Polydopamine Enhanced Interactions of Graphene Nanosheets to Fabricate Graphene/Polydopamine Aerogels with Effectively Clear Organic Pollutants. He N; Zhao X; Li Z; Shi T; Li Z; Guo F; Li W Langmuir; 2024 May; 40(18):9592-9601. PubMed ID: 38647559 [TBL] [Abstract][Full Text] [Related]
16. Graphene oxide biopolymer aerogels for the removal of lead from drinking water using a novel nano-enhanced ion exchange cascade. Bloor JM; Handy RD; Awan SA; Jenkins DFL Ecotoxicol Environ Saf; 2021 Jan; 208():111422. PubMed ID: 33091776 [TBL] [Abstract][Full Text] [Related]
17. Development of Light, Strong, and Water-Resistant PVA Composite Aerogels. Abdolazizi A; Wijesinghe I; Marriam I; Chathuranga H; Golberg D; Yan C Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727339 [TBL] [Abstract][Full Text] [Related]
18. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. Zheng X; Tang J; Wang P; Wang Z; Zou L; Li C J Colloid Interface Sci; 2022 Dec; 628(Pt A):994-1003. PubMed ID: 35973264 [TBL] [Abstract][Full Text] [Related]
19. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. Maleki H; Whitmore L; Hüsing N J Mater Chem A Mater; 2018 Jul; 6(26):12598-12612. PubMed ID: 30713688 [TBL] [Abstract][Full Text] [Related]
20. Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels. Wu N; Yang Y; Wang C; Wu Q; Pan F; Zhang R; Liu J; Zeng Z Adv Mater; 2023 Jan; 35(1):e2207969. PubMed ID: 36281792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]