BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37942054)

  • 1. Multifaceted personality and roles of heme enzymes in industrial biotechnology.
    Bhardwaj M; Kamble P; Mundhe P; Jindal M; Thakur P; Bajaj P
    3 Biotech; 2023 Dec; 13(12):389. PubMed ID: 37942054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis.
    Rajakumara E; Saniya D; Bajaj P; Rajeshwari R; Giri J; Davari MD
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C-H insertion.
    Balhara R; Chatterjee R; Jindal G
    Phys Chem Chem Phys; 2021 Apr; 23(15):9500-9511. PubMed ID: 33885085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center.
    Li LL; Yuan H; Liao F; He B; Gao SQ; Wen GB; Tan X; Lin YW
    Dalton Trans; 2017 Aug; 46(34):11230-11238. PubMed ID: 28795725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology.
    Jeffreys LN; Girvan HM; McLean KJ; Munro AW
    Methods Enzymol; 2018; 608():189-261. PubMed ID: 30173763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular C(sp(3))H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts.
    Bordeaux M; Singh R; Fasan R
    Bioorg Med Chem; 2014 Oct; 22(20):5697-704. PubMed ID: 24890656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes.
    Matsunaga I; Shiro Y
    Curr Opin Chem Biol; 2004 Apr; 8(2):127-32. PubMed ID: 15062772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity.
    Kagawa Y; Oohora K; Himiyama T; Suzuki A; Hayashi T
    Angew Chem Int Ed Engl; 2024 May; ():e202403485. PubMed ID: 38780472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide. Myoglobin mutants as a model for P450 hydroxylation chemistry.
    Pfister TD; Ohki T; Ueno T; Hara I; Adachi S; Makino Y; Ueyama N; Lu Y; Watanabe Y
    J Biol Chem; 2005 Apr; 280(13):12858-66. PubMed ID: 15664991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases.
    Kumar N; He J; Rusling JF
    Chem Soc Rev; 2023 Jul; 52(15):5135-5171. PubMed ID: 37458261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in
    Perkins LJ; Weaver BR; Buller AR; Burstyn JN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Does Replacement of the Axial Histidine Ligand in Cytochrome
    Lee CWZ; Mubarak MQE; Green AP; de Visser SP
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.