These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37942776)
41. Improving Sustainability through Covalent Adaptable Networks in the Recycling of Polyurethane Plastics. Miravalle E; Bracco P; Brunella V; Barolo C; Zanetti M Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765634 [TBL] [Abstract][Full Text] [Related]
42. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Alabiso W; Schlögl S Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554 [TBL] [Abstract][Full Text] [Related]
43. Chemical Recycling of Thiol Epoxy Thermosets via Light-Driven C-C Bond Cleavage. Nguyen ST; Fries LR; Cox JH; Ma Y; Fors BP; Knowles RR J Am Chem Soc; 2023 May; 145(20):11151-11160. PubMed ID: 37167410 [TBL] [Abstract][Full Text] [Related]
44. Dual-Dynamic Chemistries-Based Fast-Reprocessing and High-Performance Covalent Adaptable Networks. Hu K; Wang B; Xu X; Su Y; Zhang W; Zhou S; Zhang C; Zhu J; Ma S Macromol Rapid Commun; 2023 Feb; 44(4):e2200726. PubMed ID: 36250433 [TBL] [Abstract][Full Text] [Related]
45. Fast, Regioselective Aminolysis of Tetrasubstituted Cyclic Carbonates and Application to Recyclable Thermoplastics and Thermosets. Habets T; Méreau R; Siragusa F; Grignard B; Detrembleur C ACS Macro Lett; 2024 Oct; ():1425-1432. PubMed ID: 39383047 [TBL] [Abstract][Full Text] [Related]
46. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs). Podgórski M; Fairbanks BD; Kirkpatrick BE; McBride M; Martinez A; Dobson A; Bongiardina NJ; Bowman CN Adv Mater; 2020 May; 32(20):e1906876. PubMed ID: 32057157 [TBL] [Abstract][Full Text] [Related]
47. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. Nettles JA; Alfarhan S; Pascoe CA; Westover C; Madsen MD; Sintas JI; Subbiah A; Long TE; Jin K JACS Au; 2024 Aug; 4(8):3058-3069. PubMed ID: 39211581 [TBL] [Abstract][Full Text] [Related]
48. Endowing Polythioester Vitrimer with Intrinsic Crystallinity and Chemical Recyclability. Shi C; Zhang Z; Scoti M; Yan XY; Chen EY ChemSusChem; 2023 Apr; 16(8):e202300008. PubMed ID: 36638158 [TBL] [Abstract][Full Text] [Related]
49. Dual-Factor-Controlled Dynamic Precursors Enable On-Demand Thermoset Degradation and Recycling. Lei Z; Wang Z; Jiang H; Cahn JR; Chen H; Huang S; Jin Y; Wang X; Yu K; Zhang W Adv Mater; 2024 Sep; ():e2407854. PubMed ID: 39225419 [TBL] [Abstract][Full Text] [Related]
50. Recyclable, Malleable, and Strong Thermosets Enabled by Knoevenagel Adducts. Wang S; Feng H; Lim JYC; Li K; Li B; Mah JJQ; Xing Z; Zhu J; Loh XJ; Li Z J Am Chem Soc; 2024 Apr; 146(14):9920-9927. PubMed ID: 38557104 [TBL] [Abstract][Full Text] [Related]
51. Stretchable, recyclable thermosets Wu YM; Chyr G; Park H; Makar-Limanov A; Shi Y; DeSimone JM; Bao Z Chem Sci; 2023 Nov; 14(44):12535-12540. PubMed ID: 38020396 [TBL] [Abstract][Full Text] [Related]
52. Advances in the Synthesis of Chemically Recyclable Polymers. Li XL; Ma K; Xu F; Xu TQ Chem Asian J; 2023 Feb; 18(3):e202201167. PubMed ID: 36623942 [TBL] [Abstract][Full Text] [Related]
53. Acid-Cleavable Aromatic Polymers for the Fabrication of Closed-Loop Recyclable Plastics with High Mechanical Strength and Excellent Chemical Resistance. Lu X; Xie P; Li X; Li T; Sun J Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202316453. PubMed ID: 38130147 [TBL] [Abstract][Full Text] [Related]
54. Non-Isocyanate Synthesis of Covalent Adaptable Networks Based on Dynamic Hindered Urea Bonds: Sequential Polymerization and Chemical Recycling. Lyu J; Lee S; Bae HE; Jung H; Park YI; Jin YJ; Jeong JE; Kim JC Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411397. PubMed ID: 39004761 [TBL] [Abstract][Full Text] [Related]
55. Degradable and Reprocessable Resins from a Dioxolanone Cross-Linker. Şucu T; Wang M; Shaver MP Macromolecules; 2023 Feb; 56(4):1625-1632. PubMed ID: 36874530 [TBL] [Abstract][Full Text] [Related]
56. Tough and Multi-Recyclable Cross-Linked Supramolecular Polyureas via Incorporating Noncovalent Bonds into Main-Chains. Qin B; Zhang S; Sun P; Tang B; Yin Z; Cao X; Chen Q; Xu JF; Zhang X Adv Mater; 2020 Sep; 32(36):e2000096. PubMed ID: 32705730 [TBL] [Abstract][Full Text] [Related]
57. Recyclable thermosets based on modified epoxy-amine network polymers. Anderson L; Sanders EW; Unthank MG Mater Horiz; 2023 Mar; 10(3):889-898. PubMed ID: 36537891 [TBL] [Abstract][Full Text] [Related]
58. Catalyst-Free Metathesis of Cyclic Acetals and Spirocyclic Acetal Covalent Adaptable Networks. Yu S; Wu S; Zhang C; Tang Z; Luo Y; Guo B; Zhang L ACS Macro Lett; 2020 Aug; 9(8):1143-1148. PubMed ID: 35653205 [TBL] [Abstract][Full Text] [Related]
59. Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Morici E; Dintcheva NT Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236101 [TBL] [Abstract][Full Text] [Related]
60. From Lignins to Renewable Aromatic Vitrimers based on Vinylogous Urethane. Sougrati L; Duval A; Avérous L ChemSusChem; 2023 Dec; 16(23):e202300792. PubMed ID: 37486785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]