These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37943111)

  • 1. The importance of oxygen for explaining rapid shifts in a marine fish.
    Bandara RMWJ; Curchitser E; Pinsky ML
    Glob Chang Biol; 2024 Jan; 30(1):e17008. PubMed ID: 37943111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projecting marine species range shifts from only temperature can mask climate vulnerability.
    McHenry J; Welch H; Lester SE; Saba V
    Glob Chang Biol; 2019 Dec; 25(12):4208-4221. PubMed ID: 31487434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.
    Pörtner HO; Peck MA
    J Fish Biol; 2010 Nov; 77(8):1745-79. PubMed ID: 21078088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities.
    Pinsky ML; Selden RL; Kitchel ZJ
    Ann Rev Mar Sci; 2020 Jan; 12():153-179. PubMed ID: 31505130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean.
    Gordó-Vilaseca C; Stephenson F; Coll M; Lavin C; Costello MJ
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2120869120. PubMed ID: 36656855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming.
    Lindmark M; Audzijonyte A; Blanchard JL; Gårdmark A
    Glob Chang Biol; 2022 Nov; 28(21):6239-6253. PubMed ID: 35822557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven changes in functional biogeography of Arctic marine fish communities.
    Frainer A; Primicerio R; Kortsch S; Aune M; Dolgov AV; Fossheim M; Aschan MM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12202-12207. PubMed ID: 29087943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A
    Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea temperature is the primary driver of recent and predicted fish community structure across Northeast Atlantic shelf seas.
    Rutterford LA; Simpson SD; Bogstad B; Devine JA; Genner MJ
    Glob Chang Biol; 2023 May; 29(9):2510-2521. PubMed ID: 36896634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From projected species distribution to food-web structure under climate change.
    Albouy C; Velez L; Coll M; Colloca F; Le Loc'h F; Mouillot D; Gravel D
    Glob Chang Biol; 2014 Mar; 20(3):730-41. PubMed ID: 24214576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.
    Kortsch S; Primicerio R; Fossheim M; Dolgov AV; Aschan M
    Proc Biol Sci; 2015 Sep; 282(1814):. PubMed ID: 26336179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature increase drives critical slowing down of fish ecosystems.
    Li J; Convertino M
    PLoS One; 2021; 16(10):e0246222. PubMed ID: 34669703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundfish biodiversity change in northeastern Pacific waters under projected warming and deoxygenation.
    Thompson PL; Nephin J; Davies SC; Park AE; Lyons DA; Rooper CN; Angelica Peña M; Christian JR; Hunter KL; Rubidge E; Holdsworth AM
    Philos Trans R Soc Lond B Biol Sci; 2023 Jul; 378(1881):20220191. PubMed ID: 37246387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature change effects on marine fish range shifts: A meta-analysis of ecological and methodological predictors.
    Dahms C; Killen SS
    Glob Chang Biol; 2023 Aug; 29(16):4459-4479. PubMed ID: 37253462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change undermines the global functioning of marine food webs.
    du Pontavice H; Gascuel D; Reygondeau G; Maureaud A; Cheung WWL
    Glob Chang Biol; 2020 Mar; 26(3):1306-1318. PubMed ID: 31802576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change affects the distribution of diversity across marine food webs.
    Thompson MSA; Couce E; Schratzberger M; Lynam CP
    Glob Chang Biol; 2023 Dec; 29(23):6606-6619. PubMed ID: 37814904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance.
    Slesinger E; Andres A; Young R; Seibel B; Saba V; Phelan B; Rosendale J; Wieczorek D; Saba G
    PLoS One; 2019; 14(6):e0218390. PubMed ID: 31194841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.