BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37943152)

  • 1. Freezing-Enhanced Photoreduction of Iodate by Fulvic Acid.
    Du J; Hu Y; Kim K; Choi W
    Environ Sci Technol; 2023 Dec; 57(48):20272-20281. PubMed ID: 37943152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MnO
    Du J; Kim K; Son S; Pan D; Kim S; Choi W
    Environ Sci Technol; 2023 Apr; 57(13):5317-5326. PubMed ID: 36952586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-Thaw Cycle-Enhanced Transformation of Iodide to Organoiodine Compounds in the Presence of Natural Organic Matter and Fe(III).
    Du J; Kim K; Min DW; Choi W
    Environ Sci Technol; 2022 Jan; 56(2):1007-1016. PubMed ID: 34967617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-induced acceleration of iodide oxidation and consequent iodination of dissolved organic matter to form organoiodine compounds.
    Gong X; He M; Hao Z; Zhao R; Liu J
    J Environ Sci (China); 2024 Oct; 144():67-75. PubMed ID: 38802239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of iodate in iodated salt to iodide during cooking with iodine as measured by an improved HPLC/ICP-MS method.
    Liu L; Li X; Wang H; Cao X; Ma W
    J Nutr Biochem; 2017 Apr; 42():95-100. PubMed ID: 28157618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrite-Induced Activation of Iodate into Molecular Iodine in Frozen Solution.
    Kim K; Ju J; Kim B; Chung HY; Vetráková L; Heger D; Saiz-Lopez A; Choi W; Kim J
    Environ Sci Technol; 2019 May; 53(9):4892-4900. PubMed ID: 30916540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.
    Gong T; Zhang X
    Water Res; 2013 Nov; 47(17):6660-9. PubMed ID: 24075720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.
    Allard S; Nottle CE; Chan A; Joll C; von Gunten U
    Water Res; 2013 Apr; 47(6):1953-60. PubMed ID: 23351431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.
    Allard S; von Gunten U; Sahli E; Nicolau R; Gallard H
    Water Res; 2009 Aug; 43(14):3417-26. PubMed ID: 19540547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-phase microextraction-gas chromatography-mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix.
    Reddy-Noone K; Jain A; Verma KK
    J Chromatogr A; 2007 May; 1148(2):145-51. PubMed ID: 17391685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental iodine speciation quantification in seawater and snow using ion exchange chromatography and UV spectrophotometric detection.
    Jones MR; Chance R; Dadic R; Hannula HR; May R; Ward M; Carpenter LJ
    Anal Chim Acta; 2023 Jan; 1239():340700. PubMed ID: 36628710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of iodate by HPLC-UV after on-line electrochemical reduction to iodide.
    Wang T; Lin W; Dai X; Gao L; Wang B; Quan D
    J Chromatogr Sci; 2015 Feb; 53(2):280-4. PubMed ID: 25002682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake mechanism for iodine species to black carbon.
    Choung S; Um W; Kim M; Kim MG
    Environ Sci Technol; 2013 Sep; 47(18):10349-55. PubMed ID: 23941630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ozonation on the speciation of dissolved iodine in artificial seawater.
    Sherrill J; Whitaker BR; Wong GT
    J Zoo Wildl Med; 2004 Sep; 35(3):347-55. PubMed ID: 15526890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography-mass spectrometry.
    Zhang S; Schwehr KA; Ho YF; Xu C; Roberts KA; Kaplan DI; Brinkmeyer R; Yeager CM; Santschi PH
    Environ Sci Technol; 2010 Dec; 44(23):9042-8. PubMed ID: 21069952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of Geogenic Organoiodine Compounds in Alluvial-Lacustrine Aquifers: Molecular Constraints by Organic Matter.
    Xue J; Deng Y; Pi K; Fu QL; Du Y; Xu Y; Yuan X; Fan R; Xie X; Shi J; Wang Y
    Environ Sci Technol; 2024 Apr; 58(13):5932-5941. PubMed ID: 38502530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of iodinated trihalomethanes during UV/chloramination with iodate as the iodine source.
    Zhang TY; Lin YL; Wang AQ; Tian FX; Xu B; Xia SJ; Gao NY
    Water Res; 2016 Jul; 98():199-205. PubMed ID: 27105034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation analysis of both inorganic and organic
    Qi Y; Matsuzaki H
    Anal Methods; 2022 Sep; 14(37):3623-3631. PubMed ID: 36047386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abiotic formation of organoiodine compounds by manganese dioxide induced iodination of dissolved organic matter.
    Hao Z; Wang J; Yin Y; Cao D; Liu J
    Environ Pollut; 2018 May; 236():672-679. PubMed ID: 29438953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.
    Kim K; Yabushita A; Okumura M; Saiz-Lopez A; Cuevas CA; Blaszczak-Boxe CS; Min DW; Yoon HI; Choi W
    Environ Sci Technol; 2016 Feb; 50(3):1280-7. PubMed ID: 26745029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.