These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37943257)

  • 21. Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel.
    Tamura S; Jasial S; Miyao T; Funatsu K
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure-Potency Fingerprint.
    Janela T; Takeuchi K; Bajorath J
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting Bulk Average Velocity with Rigid Vegetation in Open Channels Using Tree-Based Machine Learning: A Novel Approach Using Explainable Artificial Intelligence.
    Meddage DPP; Ekanayake IU; Herath S; Gobirahavan R; Muttil N; Rathnayake U
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.
    Turk S; Merget B; Rippmann F; Fulle S
    J Chem Inf Model; 2017 Dec; 57(12):3079-3085. PubMed ID: 29131617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic identification of activity cliffs with dual-atom replacements and their rationalization on the basis of single-atom replacement analogs and X-ray structures.
    Hu H; Bajorath J
    Chem Biol Drug Des; 2022 Feb; 99(2):308-319. PubMed ID: 34806310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.
    Rodríguez-Pérez R; Vogt M; Bajorath J
    ACS Omega; 2017 Oct; 2(10):6371-6379. PubMed ID: 30023518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis.
    Siemers FM; Bajorath J
    Sci Rep; 2023 Apr; 13(1):5983. PubMed ID: 37045972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Introducing a new category of activity cliffs combining different compound similarity criteria.
    Hu H; Bajorath J
    RSC Med Chem; 2020 Jan; 11(1):132-141. PubMed ID: 33479613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria.
    Hu H; Stumpfe D; Bajorath J
    Future Med Chem; 2019 Mar; 11(5):379-394. PubMed ID: 30887828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):983-992. PubMed ID: 30547580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Introducing a new category of activity cliffs with chemical modifications at multiple sites and rationalizing contributions of individual substitutions.
    Stumpfe D; Hu H; Bajorath J
    Bioorg Med Chem; 2019 Aug; 27(16):3605-3612. PubMed ID: 31272836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review.
    Ali S; Akhlaq F; Imran AS; Kastrati Z; Daudpota SM; Moosa M
    Comput Biol Med; 2023 Nov; 166():107555. PubMed ID: 37806061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of activity cliffs is accompanied by systematic increases in ligand efficiency from lowly to highly potent compounds.
    de la Vega de León A; Bajorath J
    AAPS J; 2014 Mar; 16(2):335-41. PubMed ID: 24477941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account.
    Hu Y; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2013 Feb; 27(2):115-24. PubMed ID: 23296990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency of occurrence and potency range distribution of activity cliffs in bioactive compounds.
    Stumpfe D; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2348-53. PubMed ID: 22866827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Exploration of Activity Cliffs Containing Privileged Substructures.
    Hu H; Bajorath J
    Mol Pharm; 2020 Mar; 17(3):979-989. PubMed ID: 31978299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between prediction accuracy and uncertainty in compound potency prediction using deep neural networks and control models.
    Roth JP; Bajorath J
    Sci Rep; 2024 Mar; 14(1):6536. PubMed ID: 38503823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.