These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37943257)

  • 41. Evolving Concept of Activity Cliffs.
    Stumpfe D; Hu H; Bajorath J
    ACS Omega; 2019 Sep; 4(11):14360-14368. PubMed ID: 31528788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Jul; 52(7):1806-11. PubMed ID: 22758389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic identification of target set-dependent activity cliffs.
    Hu H; Stumpfe D; Bajorath J
    Future Sci OA; 2019 Feb; 5(2):FSO363. PubMed ID: 30828462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Mar; 52(3):670-7. PubMed ID: 22394306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in exploring activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):929-942. PubMed ID: 32367387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Explainable machine learning predictions of dual-target compounds reveal characteristic structural features.
    Feldmann C; Philipps M; Bajorath J
    Sci Rep; 2021 Nov; 11(1):21594. PubMed ID: 34732806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes?
    Ward IR; Wang L; Lu J; Bennamoun M; Dwivedi G; Sanfilippo FM
    Comput Methods Programs Biomed; 2021 Nov; 212():106415. PubMed ID: 34715520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring SAR continuity in the vicinity of activity cliffs.
    Namasivayam V; Iyer P; Bajorath J
    Chem Biol Drug Des; 2012 Jan; 79(1):22-9. PubMed ID: 21985661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-dependent AI-Modeling of the anticancer efficacy of synthesized gallic acid analogues.
    Sherin L; Sohail A; Shujaat S
    Comput Biol Chem; 2019 Apr; 79():137-146. PubMed ID: 30818108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rationalizing the Formation of Activity Cliffs in Different Compound Data Sets.
    Hu H; Stumpfe D; Bajorath J
    ACS Omega; 2018 Jul; 3(7):7736-7744. PubMed ID: 31458921
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benchmarking Molecular Feature Attribution Methods with Activity Cliffs.
    Jiménez-Luna J; Skalic M; Weskamp N
    J Chem Inf Model; 2022 Jan; 62(2):274-283. PubMed ID: 35019265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From activity cliffs to activity ridges: informative data structures for SAR analysis.
    Vogt M; Huang Y; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1848-56. PubMed ID: 21761918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues.
    Hu Y; Bajorath J
    ChemMedChem; 2016 Jun; 11(12):1362-70. PubMed ID: 26358784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing highly potent compounds using a chemical language model.
    Chen H; Bajorath J
    Sci Rep; 2023 May; 13(1):7412. PubMed ID: 37150793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic generation and analysis of counterfactuals for compound activity predictions using multi-task models.
    Lamens A; Bajorath J
    RSC Med Chem; 2024 May; 15(5):1547-1555. PubMed ID: 38784468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds.
    Parrott N; Manevski N; Olivares-Morales A
    Mol Pharm; 2022 Nov; 19(11):3858-3868. PubMed ID: 36150125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.