These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37943257)
61. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds. Wassermann AM; Dimova D; Bajorath J Chem Biol Drug Des; 2011 Aug; 78(2):224-8. PubMed ID: 21624090 [TBL] [Abstract][Full Text] [Related]
62. CIRCE: Web-Based Platform for the Prediction of Cannabinoid Receptor Ligands Using Explainable Machine Learning. Gambacorta N; Ciriaco F; Amoroso N; Altomare CD; Bajorath J; Nicolotti O J Chem Inf Model; 2023 Sep; 63(18):5916-5926. PubMed ID: 37675493 [TBL] [Abstract][Full Text] [Related]
63. A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems. Duval A; Nogueira D; Dissler N; Maskani Filali M; Delestro Matos F; Chansel-Debordeaux L; Ferrer-Buitrago M; Ferrer E; Antequera V; Ruiz-Jorro M; Papaxanthos A; Ouchchane H; Keppi B; Prima PY; Regnier-Vigouroux G; Trebesses L; Geoffroy-Siraudin C; Zaragoza S; Scalici E; Sanguinet P; Cassagnard N; Ozanon C; De La Fuente A; Gómez E; Gervoise Boyer M; Boyer P; Ricciarelli E; Pollet-Villard X; Boussommier-Calleja A Hum Reprod; 2023 Apr; 38(4):596-608. PubMed ID: 36763673 [TBL] [Abstract][Full Text] [Related]
64. Activity cliffs produced by single-atom modification of active compounds: Systematic identification and rationalization based on X-ray structures. Hu H; Bajorath J Eur J Med Chem; 2020 Dec; 207():112846. PubMed ID: 32977219 [TBL] [Abstract][Full Text] [Related]
65. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns. Namasivayam V; Gupta-Ostermann D; Balfer J; Heikamp K; Bajorath J J Chem Inf Model; 2014 May; 54(5):1301-10. PubMed ID: 24803014 [TBL] [Abstract][Full Text] [Related]
66. An Explainable Artificial Intelligence Software Tool for Weight Management Experts (PRIMO): Mixed Methods Study. Fernandes GJ; Choi A; Schauer JM; Pfammatter AF; Spring BJ; Darwiche A; Alshurafa NI J Med Internet Res; 2023 Sep; 25():e42047. PubMed ID: 37672333 [TBL] [Abstract][Full Text] [Related]
67. Molecular scaffolds with high propensity to form multi-target activity cliffs. Hu Y; Bajorath J J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784 [TBL] [Abstract][Full Text] [Related]
68. Explainable artificial intelligence in forensics: Realistic explanations for number of contributor predictions of DNA profiles. Veldhuis MS; Ariëns S; Ypma RJF; Abeel T; Benschop CCG Forensic Sci Int Genet; 2022 Jan; 56():102632. PubMed ID: 34839075 [TBL] [Abstract][Full Text] [Related]
69. Quantitative image signature and machine learning-based prediction of outcomes in cerebral cavernous malformations. Jabal MS; Mohammed MA; Kobeissi H; Lanzino G; Brinjikji W; Flemming KD J Stroke Cerebrovasc Dis; 2024 Jan; 33(1):107462. PubMed ID: 37931483 [TBL] [Abstract][Full Text] [Related]
70. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Lemańska-Perek A; Krzyżanowska-Gołąb D; Kobylińska K; Biecek P; Skalec T; Tyszko M; Gozdzik W; Adamik B Cells; 2022 Aug; 11(15):. PubMed ID: 35954279 [TBL] [Abstract][Full Text] [Related]
71. Activity cliff clusters as a source of structure-activity relationship information. Dimova D; Stumpfe D; Hu Y; Bajorath J Expert Opin Drug Discov; 2015 May; 10(5):441-7. PubMed ID: 25715967 [TBL] [Abstract][Full Text] [Related]
76. Feature importance of machine learning prediction models shows structurally active part and important physicochemical features in drug design. Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E Drug Metab Pharmacokinet; 2021 Aug; 39():100401. PubMed ID: 34089983 [TBL] [Abstract][Full Text] [Related]
77. Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel. Mastropietro A; Feldmann C; Bajorath J Sci Rep; 2023 Nov; 13(1):19561. PubMed ID: 37949930 [TBL] [Abstract][Full Text] [Related]
78. Modelling Structure Activity Landscapes with Cliffs: a Kernel Regression-Based Approach. Tebby C; Mombelli E Mol Inform; 2013 Jul; 32(7):609-23. PubMed ID: 27481769 [TBL] [Abstract][Full Text] [Related]
79. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses. Beck JM; Springer C J Chem Inf Model; 2014 Apr; 54(4):1226-34. PubMed ID: 24605924 [TBL] [Abstract][Full Text] [Related]