These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37943641)

  • 1. Adaptive Online Decomposition of Surface EMG Using Progressive FastICA Peel-Off.
    Zhao H; Zhang X; Chen M; Zhou P
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1257-1268. PubMed ID: 37943641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online Decomposition of Surface Electromyogram Into Individual Motor Unit Activities Using Progressive FastICA Peel-Off.
    Zhao H; Zhang X; Chen M; Zhou P
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):160-170. PubMed ID: 37432836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Implementation of Progressive FastICA Peel-Off for High Density Surface EMG Decomposition.
    Chen M; Zhang X; Chen X; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):144-152. PubMed ID: 28981419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Framework Based on FastICA for High Density Surface EMG Decomposition.
    Chen M; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):117-27. PubMed ID: 25775496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Source Validation of Progressive FastICA Peel-Off for Automatic Surface EMG Decomposition in Human First Dorsal Interosseous Muscle.
    Chen M; Zhang X; Lu Z; Li X; Zhou P
    Int J Neural Syst; 2018 Nov; 28(9):1850019. PubMed ID: 29909721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Real-Time Decomposition of Electromyogram During Sustained Muscle Activation: A Simulation Study.
    Zheng Y; Hu X
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):645-653. PubMed ID: 34357862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved online decomposition of non-stationary electromyogram via signal enhancement using a neuron resonance model: a simulation study.
    Zheng Y; Xu G; Li Y; Qiang W
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35303735
    [No Abstract]   [Full Text] [Related]  

  • 8. Automatic Multichannel Intramuscular Electromyogram Decomposition: Progressive FastICA Peel-Off and Performance Validation.
    Chen M; Zhang X; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):76-84. PubMed ID: 30475723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals.
    Chen C; Ma S; Sheng X; Farina D; Zhu X
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3501-3509. PubMed ID: 32324538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.
    Chen M; Holobar A; Zhang X; Zhou P
    Neural Plast; 2016; 2016():3489540. PubMed ID: 27642525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Density Surface EMG Decomposition by Combining Iterative Convolution Kernel Compensation With an Energy-Specific Peel-off Strategy.
    Zheng Y; Ma Y; Liu Y; Houston M; Guo C; Lian Q; Li S; Zhou P; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3641-3651. PubMed ID: 37656648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressed spike-triggered averaging in iterative decomposition of surface EMG.
    Lundsberg J; Björkman A; Malesevic N; Antfolk C
    Comput Methods Programs Biomed; 2023 Jan; 228():107250. PubMed ID: 36436327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time isometric finger extension force estimation based on motor unit discharge information.
    Zheng Y; Hu X
    J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Encoder-Decoder Deep Networks for Decoding Neural Drive Information towards Precise Muscle Force Estimation.
    Tang X; Chen M; Chen X; Chen X; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():176-179. PubMed ID: 33017958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous and proportional control of wrist and hand movements by decoding motor unit discharges in real time.
    Chen C; Yu Y; Sheng X; Farina D; Zhu X
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33764315
    [No Abstract]   [Full Text] [Related]  

  • 16. A Novel Validation Approach for High-Density Surface EMG Decomposition in Motor Neuron Disease.
    Chen M; Zhang X; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1161-1168. PubMed ID: 29877840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding finger movement patterns from microscopic neural drive information based on deep learning.
    Zhao Y; Zhang X; Li X; Zhao H; Chen X; Chen X; Gao X
    Med Eng Phys; 2022 Jun; 104():103797. PubMed ID: 35641068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Method for Decoding the Neural Drive to Muscles Using Single-Channel Intra-Muscular EMG Recordings.
    Karimimehr S; Marateb HR; Muceli S; Mansourian M; Mañanas MA; Farina D
    Int J Neural Syst; 2017 Sep; 27(6):1750025. PubMed ID: 28427290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Independent Component Analysis based EMG decomposition - a comparison study.
    Xygonakis I; Zavaglia M; Haddadin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a generalizable deep CNN for neural drive estimation across muscles and participants.
    Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548991
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.