These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37943887)
1. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887 [TBL] [Abstract][Full Text] [Related]
2. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks. Turner JA; Chaaban CR; Padua DA J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926 [TBL] [Abstract][Full Text] [Related]
3. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
4. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics. Haberkamp LD; Garcia MC; Bazett-Jones DM J Biomech; 2022 Nov; 144():111333. PubMed ID: 36198251 [TBL] [Abstract][Full Text] [Related]
5. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
6. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Schmitz A; Ye M; Shapiro R; Yang R; Noehren B J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287 [TBL] [Abstract][Full Text] [Related]
7. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment. Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993 [TBL] [Abstract][Full Text] [Related]
8. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672 [TBL] [Abstract][Full Text] [Related]
9. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921 [TBL] [Abstract][Full Text] [Related]
10. AI-smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps. Barzyk P; Zimmermann P; Stein M; Keim D; Gruber M Eur J Sport Sci; 2024 Oct; 24(10):1452-1462. PubMed ID: 39205332 [TBL] [Abstract][Full Text] [Related]
11. TWO-DIMENSIONAL VIDEO ANALYSIS IS COMPARABLE TO 3D MOTION CAPTURE IN LOWER EXTREMITY MOVEMENT ASSESSMENT. Schurr SA; Marshall AN; Resch JE; Saliba SA Int J Sports Phys Ther; 2017 Apr; 12(2):163-172. PubMed ID: 28515970 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions. Kanko RM; Outerleys JB; Laende EK; Selbie WS; Deluzio KJ J Appl Biomech; 2024 Apr; 40(2):129-137. PubMed ID: 38237574 [TBL] [Abstract][Full Text] [Related]
13. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
14. The applicability of markerless motion capture for clinical gait analysis in children with cerebral palsy. Wishaupt K; Schallig W; van Dorst MH; Buizer AI; van der Krogt MM Sci Rep; 2024 May; 14(1):11910. PubMed ID: 38789587 [TBL] [Abstract][Full Text] [Related]
15. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570 [TBL] [Abstract][Full Text] [Related]
16. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833 [TBL] [Abstract][Full Text] [Related]
17. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
18. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886 [TBL] [Abstract][Full Text] [Related]
19. The accuracy of several pose estimation methods for 3D joint centre localisation. Needham L; Evans M; Cosker DP; Wade L; McGuigan PM; Bilzon JL; Colyer SL Sci Rep; 2021 Oct; 11(1):20673. PubMed ID: 34667207 [TBL] [Abstract][Full Text] [Related]
20. Applications of markerless motion capture in gait recognition. Sandau M Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]