These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37944479)

  • 21. Spatial and Temporal Resolution of the Visual System of the Anna's Hummingbird (
    Goller B; Fellows TK; Dakin R; Tyrrell L; Fernández-Juricic E; Altshuler DL
    Physiol Biochem Zool; 2019; 92(5):481-495. PubMed ID: 31393209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Take-off mechanics in hummingbirds (Trochilidae).
    Tobalske BW; Altshuler DL; Powers DR
    J Exp Biol; 2004 Mar; 207(Pt 8):1345-52. PubMed ID: 15010485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Proctophyllodes huitzilopochtlii on feathers from Anna's (Calypte anna) and Black-chinned (Archilochus alexandri) Hummingbirds: Prevalence assessment and imaging analysis using light and tabletop scanning electron microscopy.
    Yamasaki YK; Graves EE; Houston RS; OConnor BM; Kysar PE; Straub MH; Foley JE; Tell LA
    PLoS One; 2018; 13(2):e0191323. PubMed ID: 29444089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost.
    Sapir N; Dudley R
    J Exp Biol; 2012 Oct; 215(Pt 20):3603-11. PubMed ID: 23014570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ontogeny of aerial righting and wing flapping in juvenile birds.
    Evangelista D; Cam S; Huynh T; Krivitskiy I; Dudley R
    Biol Lett; 2014 Aug; 10(8):. PubMed ID: 25165451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wind and obstacle motion affect honeybee flight strategies in cluttered environments.
    Burnett NP; Badger MA; Combes SA
    J Exp Biol; 2020 Jul; 223(Pt 14):. PubMed ID: 32561633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biomechanical origin of extreme wing allometry in hummingbirds.
    Skandalis DA; Segre PS; Bahlman JW; Groom DJE; Welch KC; Witt CC; McGuire JA; Dudley R; Lentink D; Altshuler DL
    Nat Commun; 2017 Oct; 8(1):1047. PubMed ID: 29051535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.
    Badger M; Ortega-Jimenez VM; von Rabenau L; Smiley A; Dudley R
    PLoS One; 2015; 10(9):e0138003. PubMed ID: 26421845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of timing and magnitude of wing stroke-plane tilt on the escape maneuverability of flapping wing.
    Zhou C; Chen L; Wu J
    Bioinspir Biomim; 2020 Nov; 16(1):016010. PubMed ID: 33252051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna's hummingbirds.
    Segre PS; Dakin R; Zordan VB; Dickinson MH; Straw AD; Altshuler DL
    Elife; 2015 Nov; 4():e11159. PubMed ID: 26583753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio.
    Hedrick TL; Tobalske BW; Ros IG; Warrick DR; Biewener AA
    Proc Biol Sci; 2012 May; 279(1735):1986-92. PubMed ID: 22171086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.
    Vejdani HR; Boerma DB; Swartz SM; Breuer KS
    Bioinspir Biomim; 2018 Nov; 14(1):016003. PubMed ID: 30411710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
    Altshuler DL; Dudley R; McGuire JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17731-6. PubMed ID: 15598748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the hum of hovering animals.
    Niese R
    Elife; 2021 Apr; 10():. PubMed ID: 33872138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Close encounters of three kinds: impacts of leg, wing and body collisions on flight performance in carpenter bees.
    Burnett NP; Combes SA
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37066861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers (
    Meresman Y; Ribak G
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33168594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.