These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein S1 Induces Methylglyoxal-Derived Hydroimidazolone/Receptor for Advanced Glycation End Products (MG-H1/RAGE) Activation to Promote Inflammation in Human Bronchial BEAS-2B Cells. Manfredelli D; Pariano M; Costantini C; Graziani A; Bozza S; Romani L; Puccetti P; Talesa VN; Antognelli C Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834316 [TBL] [Abstract][Full Text] [Related]
3. Antiviral and Anti-Inflammatory Therapeutic Effect of RAGE-Ig Protein against Multiple SARS-CoV-2 Variants of Concern Demonstrated in K18-hACE2 Mouse and Syrian Golden Hamster Models. Dhanushkodi NR; Prakash S; Quadiri A; Zayou L; Srivastava R; Shaik AM; Suzer B; Ibraim IC; Landucci G; Tifrea DF; Singer M; Jamal L; Edwards RA; Vahed H; Brown L; BenMohamed L J Immunol; 2024 Feb; 212(4):576-585. PubMed ID: 38180084 [TBL] [Abstract][Full Text] [Related]
4. Receptor for advanced glycation end-products axis and coronavirus disease 2019 in inflammatory bowel diseases: A dangerous liaison? Rojas A; Schneider I; Lindner C; Gonzàlez I; Morales MA World J Gastroenterol; 2021 May; 27(19):2270-2280. PubMed ID: 34040321 [TBL] [Abstract][Full Text] [Related]
5. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Roy D; Ramasamy R; Schmidt AM Arterioscler Thromb Vasc Biol; 2021 Feb; 41(2):614-627. PubMed ID: 33327744 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Expression of RAGE AXIS Is Associated with Severity of COVID-19 in Patients with Comorbidities. Waraich RS; Sohail FA; Khan G; Durr-E-Shahwar S; Khan B; Rafi S; Nasir S Metab Syndr Relat Disord; 2023 Apr; 21(3):141-147. PubMed ID: 36787461 [No Abstract] [Full Text] [Related]
7. RAGE Is a Receptor for SARS-CoV-2 N Protein and Mediates N Protein-induced Acute Lung Injury. Xia J; Wang J; Ying L; Huang R; Zhang K; Zhang R; Tang W; Xu Q; Lai D; Zhang Y; Hu Y; Zhang X; Zang R; Fan J; Shu Q; Xu J Am J Respir Cell Mol Biol; 2023 Nov; 69(5):508-520. PubMed ID: 37478333 [TBL] [Abstract][Full Text] [Related]
8. The S1 Subunit of the SARS-CoV-2 Spike Protein Activates Human Monocytes to Produce Cytokines Linked to COVID-19: Relevance to Galectin-3. Schroeder JT; Bieneman AP Front Immunol; 2022; 13():831763. PubMed ID: 35392091 [TBL] [Abstract][Full Text] [Related]
10. Association of SARS-CoV-2 nucleocapsid viral antigen and the receptor for advanced glycation end products with development of severe disease in patients presenting to the emergency department with COVID-19. Matthay ZA; Fields AT; Wick KD; Jones C; Lane HC; Herrera K; Nuñez-Garcia B; Gennatas E; Hendrickson CM; Kornblith AE; Matthay MA; Kornblith LZ; Front Immunol; 2023; 14():1130821. PubMed ID: 37026003 [TBL] [Abstract][Full Text] [Related]
11. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Chiappalupi S; Salvadori L; Donato R; Riuzzi F; Sorci G Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34204735 [TBL] [Abstract][Full Text] [Related]
12. Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Lai YC; Cheng YW; Chao CH; Chang YY; Chen CD; Tsai WJ; Wang S; Lin YS; Chang CP; Chuang WJ; Chen LY; Wang YR; Chang SY; Huang W; Wang JR; Tseng CK; Lin CK; Chuang YC; Yeh TM Front Immunol; 2022; 13():868724. PubMed ID: 35603169 [TBL] [Abstract][Full Text] [Related]
13. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Chiappalupi S; Salvadori L; Vukasinovic A; Donato R; Sorci G; Riuzzi F Life Sci; 2021 May; 272():119251. PubMed ID: 33636175 [TBL] [Abstract][Full Text] [Related]
15. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. Hejenkowska ED; Mitash N; Donovan JE; Chandra A; Bertrand C; De Santi C; Greene CM; Mu F; Swiatecka-Urban A J Innate Immun; 2023; 15(1):629-646. PubMed ID: 37579743 [TBL] [Abstract][Full Text] [Related]
16. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. Jessop F; Schwarz B; Scott D; Roberts LM; Bohrnsen E; Hoidal JR; Bosio CM JCI Insight; 2022 Jan; 7(2):. PubMed ID: 35076028 [TBL] [Abstract][Full Text] [Related]
17. Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis. Boumaza A; Gay L; Mezouar S; Bestion E; Diallo AB; Michel M; Desnues B; Raoult D; La Scola B; Halfon P; Vitte J; Olive D; Mege JL J Infect Dis; 2021 Aug; 224(3):395-406. PubMed ID: 33493287 [TBL] [Abstract][Full Text] [Related]
18. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Sellegounder D; Zafari P; Rajabinejad M; Taghadosi M; Kapahi P Int Immunopharmacol; 2021 Sep; 98():107806. PubMed ID: 34352471 [TBL] [Abstract][Full Text] [Related]
19. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. Stilhano RS; Costa AJ; Nishino MS; Shams S; Bartolomeo CS; Breithaupt-Faloppa AC; Silva EA; Ramirez AL; Prado CM; Ureshino RP FASEB J; 2020 Nov; 34(11):14103-14119. PubMed ID: 32965736 [TBL] [Abstract][Full Text] [Related]
20. Equine Anti-SARS-CoV-2 Serum (ECIG) Binds to Mutated RBDs and N Proteins of Variants of Concern and Inhibits the Binding of RBDs to ACE-2 Receptor. Andrade SA; Batalha-Carvalho JV; Curi R; Wen FH; Covas DT; Chudzinski-Tavassi AM; Moro AM Front Immunol; 2022; 13():871874. PubMed ID: 35898497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]