These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37944619)

  • 1. Macromolecular crowding potently stimulates DNA supercoiling activity of Mycobacterium tuberculosis DNA gyrase.
    Deng Z; Chapagain P; Leng F
    J Biol Chem; 2023 Dec; 299(12):105439. PubMed ID: 37944619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule dynamics of DNA gyrase in evolutionarily distant bacteria Mycobacterium tuberculosis and Escherichia coli.
    Galvin CJ; Hobson M; Meng JX; Ierokomos A; Ivanov IE; Berger JM; Bryant Z
    J Biol Chem; 2023 May; 299(5):103003. PubMed ID: 36775125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S; Gubaev A; Klostermeier D
    J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity.
    Aubry A; Pan XS; Fisher LM; Jarlier V; Cambau E
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1281-8. PubMed ID: 15047530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance.
    Gross CH; Parsons JD; Grossman TH; Charifson PS; Bellon S; Jernee J; Dwyer M; Chambers SP; Markland W; Botfield M; Raybuck SA
    Antimicrob Agents Chemother; 2003 Mar; 47(3):1037-46. PubMed ID: 12604539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micrococcus luteus DNA gyrase: active components and a model for its supercoiling of DNA.
    Liu LF; Wang JC
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2098-102. PubMed ID: 276855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase.
    Hobson MJ; Bryant Z; Berger JM
    Nucleic Acids Res; 2020 Feb; 48(4):2035-2049. PubMed ID: 31950157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical analysis of DNA gyrase using rotor bead tracking.
    Gore J; Bryant Z; Stone MD; Nöllmann M; Cozzarelli NR; Bustamante C
    Nature; 2006 Jan; 439(7072):100-104. PubMed ID: 16397501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based drug repurposing to inhibit the DNA gyrase of Mycobacterium tuberculosis.
    Gl B; Rajput R; Gupta M; Dahiya P; Thakur JK; Bhatnagar R; Grover A
    Biochem J; 2020 Nov; 477(21):4167-4190. PubMed ID: 33030198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of ATP at only one GyrB subunit is sufficient to promote supercoiling by DNA gyrase.
    Kampranis SC; Maxwell A
    J Biol Chem; 1998 Oct; 273(41):26305-9. PubMed ID: 9756859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interactions between gyrase subunits are optimized in a species-specific manner.
    Weidlich D; Klostermeier D
    J Biol Chem; 2020 Feb; 295(8):2299-2312. PubMed ID: 31953321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA.
    Basu A; Schoeffler AJ; Berger JM; Bryant Z
    Nat Struct Mol Biol; 2012 Apr; 19(5):538-46, S1. PubMed ID: 22484318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA).
    Huang YY; Deng JY; Gu J; Zhang ZP; Maxwell A; Bi LJ; Chen YY; Zhou YF; Yu ZN; Zhang XE
    Nucleic Acids Res; 2006; 34(19):5650-9. PubMed ID: 17038336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy coupling in DNA gyrase and the mechanism of action of novobiocin.
    Sugino A; Higgins NP; Brown PO; Peebles CL; Cozzarelli NR
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4838-42. PubMed ID: 368801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth.
    Hsieh LS; Burger RM; Drlica K
    J Mol Biol; 1991 Jun; 219(3):443-50. PubMed ID: 1646892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Ca²⁺ in the activity of Mycobacterium tuberculosis DNA gyrase.
    Karkare S; Yousafzai F; Mitchenall LA; Maxwell A
    Nucleic Acids Res; 2012 Oct; 40(19):9774-87. PubMed ID: 22844097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterial DNA gyrase: enzyme purification and characterization of supercoiling activity.
    Wu LC; Shahied SI
    Arch Biochem Biophys; 1995 Dec; 324(1):123-9. PubMed ID: 7503546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct subunit architecture and assembly pattern of DNA gyrase from mycobacteria.
    Faheem I; Gupta R; Nagaraja V
    Mol Microbiol; 2023 Jun; 119(6):728-738. PubMed ID: 37190861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.