BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37944640)

  • 1. Vascular pathophysiology of sickle cell disease.
    Connes P; Renoux C; Joly P; Nader E
    Presse Med; 2023 Dec; 52(4):104202. PubMed ID: 37944640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction.
    Nader E; Conran N; Romana M; Connes P
    Compr Physiol; 2021 Apr; 11(2):1785-1803. PubMed ID: 33792905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Vesicles in Sickle Cell Disease: Plasma Concentration, Blood Cell Types Origin Distribution and Biological Properties.
    Nader E; Garnier Y; Connes P; Romana M
    Front Med (Lausanne); 2021; 8():728693. PubMed ID: 34490315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Not Available].
    Connes P; Nader E
    Rev Med Interne; 2023 Nov; 44(4S1):4S18-4S23. PubMed ID: 38049242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of blood rheology in sickle cell disease.
    Connes P; Alexy T; Detterich J; Romana M; Hardy-Dessources MD; Ballas SK
    Blood Rev; 2016 Mar; 30(2):111-8. PubMed ID: 26341565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness.
    Connes P
    Clin Hemorheol Microcirc; 2024; 86(1-2):9-27. PubMed ID: 38073384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry.
    Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K; Patel M; Oksenberg D; Cabrales P
    Clin Hemorheol Microcirc; 2018; 70(1):95-105. PubMed ID: 29660913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Synthesis, and Evaluation of Allosteric Effectors for Hemoglobin.
    Enakaya NA; Jefferson A; Chew-Martinez D; Matthews JS
    Acc Chem Res; 2023 Jun; 56(11):1279-1286. PubMed ID: 36946781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease.
    Nyffenegger N; Zennadi R; Kalleda N; Flace A; Ingoglia G; Buzzi RM; Doucerain C; Buehler PW; Schaer DJ; Dürrenberger F; Manolova V
    Blood; 2022 Aug; 140(7):769-781. PubMed ID: 35714304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sickle cell disease as a vascular disorder.
    Ofori-Acquah SF
    Expert Rev Hematol; 2020 Jun; 13(6):645-653. PubMed ID: 32362160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities.
    Alramadhani D; Aljahdali AS; Abdulmalik O; Pierce BD; Safo MK
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sickle cell disease, vasculopathy, and therapeutics.
    Kassim AA; DeBaun MR
    Annu Rev Med; 2013; 64():451-66. PubMed ID: 23190149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease.
    Kaminski TW; Katoch O; Li Z; Hanway CB; Dubey RK; Alagbe A; Brzoska T; Zhang H; Sundd P; Kato GJ; Novelli EM; Pradhan-Sundd T
    Haematologica; 2024 May; 109(5):1535-1550. PubMed ID: 37941440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GBT021601 improves red blood cell health and the pathophysiology of sickle cell disease in a murine model.
    Dufu K; Alt C; Strutt S; Partridge J; Tang T; Siu V; Liao-Zou H; Rademacher P; Williams AT; Muller CR; Geng X; Pochron MP; Dang AN; Cabrales P; Li Z; Oksenberg D; Cathers BE
    Br J Haematol; 2023 Jul; 202(1):173-183. PubMed ID: 36960712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise.
    Nader E; Skinner S; Romana M; Fort R; Lemonne N; Guillot N; Gauthier A; Antoine-Jonville S; Renoux C; Hardy-Dessources MD; Stauffer E; Joly P; Bertrand Y; Connes P
    Front Physiol; 2019; 10():1329. PubMed ID: 31749708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiological insights in sickle cell disease.
    Odièvre MH; Verger E; Silva-Pinto AC; Elion J
    Indian J Med Res; 2011 Oct; 134(4):532-7. PubMed ID: 22089617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypercoagulability in Sickle Cell Disease: A Thrombo-Inflammatory Mechanism.
    Hamali HA
    Hemoglobin; 2023 Nov; 47(6):205-214. PubMed ID: 38189099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications.
    Tantawy AA; Adly AA; Ismail EA; Habeeb NM; Farouk A
    Platelets; 2013; 24(8):605-14. PubMed ID: 23249216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.