BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37944725)

  • 21. Chemical modification of cellulosic fibers for better convertibility in packaging applications.
    Vuoti S; Laatikainen E; Heikkinen H; Johansson LS; Saharinen E; Retulainen E
    Carbohydr Polym; 2013 Jul; 96(2):549-59. PubMed ID: 23768600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane.
    Wafti NSA; Yunus R; Lau HLN; Yaw TCS; Aziz SA
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2429-2444. PubMed ID: 34269888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters.
    Kosaka PM; Kawano Y; El Seoud OA; Petri DF
    Langmuir; 2007 Nov; 23(24):12167-73. PubMed ID: 17949116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology.
    Ávila Ramírez JA; Suriano CJ; Cerrutti P; Foresti ML
    Carbohydr Polym; 2014 Dec; 114():416-423. PubMed ID: 25263909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipase immobilization on high water adsorbing capacity bagasse: applications in bio-based plasticizer synthesis.
    Cui C; Cai D
    Mol Biol Rep; 2018 Dec; 45(6):2095-2102. PubMed ID: 30209742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin.
    Zhang Y; Ma G; Wang S; Nian B; Hu Y
    J Sci Food Agric; 2023 Dec; 103(15):7849-7861. PubMed ID: 37467367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of Immobilized Lipase Based on Hollow Mesoporous Silica Spheres and Its Application in Ester Synthesis.
    Dong Z; Jiang MY; Shi J; Zheng MM; Huang FH
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters.
    Fauré N; Illanes A
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1332-41. PubMed ID: 21887523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Ribose - Oleic Acid Esters in the Presence- and Absence of Candida antarctica Lipase B.
    Çetinkaya S; Yenidünya AF; Başoğlu F; Saraç K
    J Oleo Sci; 2020 Aug; 69(8):907-912. PubMed ID: 32641616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology.
    Hakalin NLS; Molina-Gutiérrez M; Prieto A; Martínez MJ
    Food Chem; 2018 Sep; 261():139-148. PubMed ID: 29739574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents.
    Krystof M; Pérez-Sánchez M; Domínguez de María P
    ChemSusChem; 2013 Apr; 6(4):630-4. PubMed ID: 23456887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobizing cellulose surfaces via catalyzed transesterification reaction using soybean oil and starch.
    Le PT; Nguyen KT
    Heliyon; 2020 Nov; 6(11):e05559. PubMed ID: 33294696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system.
    Lage FA; Bassi JJ; Corradini MC; Todero LM; Luiz JH; Mendes AA
    Enzyme Microb Technol; 2016 Mar; 84():56-67. PubMed ID: 26827775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on Hydrophobic Supports.
    Remonatto D; de Oliveira JV; Manuel Guisan J; de Oliveira D; Ninow J; Fernandez-Lorente G
    Appl Biochem Biotechnol; 2018 Jul; 185(3):705-716. PubMed ID: 29297136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-Nanocrystalline Cellulose (CNC) Nanocomposites.
    Abraham E; Kam D; Nevo Y; Slattegard R; Rivkin A; Lapidot S; Shoseyov O
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28086-28095. PubMed ID: 27704756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipase-catalyzed synthesis of hydrophobically modified dextrans: activity and regioselectivity of lipase from Candida rugosa.
    Kaewprapan K; Wongkongkatep J; Panbangred W; Phinyocheep P; Marie E; Durand A; Inprakhon P
    J Biosci Bioeng; 2011 Aug; 112(2):124-9. PubMed ID: 21602099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase.
    Brault G; Shareck F; Hurtubise Y; Lépine F; Doucet N
    PLoS One; 2014; 9(3):e91872. PubMed ID: 24670408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.
    Cui C; Guan N; Xing C; Chen B; Tan T
    Colloids Surf B Biointerfaces; 2016 Oct; 146():490-7. PubMed ID: 27416561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels.
    Fumagalli M; Ouhab D; Boisseau SM; Heux L
    Biomacromolecules; 2013 Sep; 14(9):3246-55. PubMed ID: 23889256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of cellulose molar mass on the properties of palmitate esters.
    Willberg-Keyriläinen P; Talja R; Asikainen S; Harlin A; Ropponen J
    Carbohydr Polym; 2016 Oct; 151():988-995. PubMed ID: 27474646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.