These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Lee BY; Kim DH; Park J; Park KI; Lee KJ; Jeong CK Sci Technol Adv Mater; 2019; 20(1):758-773. PubMed ID: 31447955 [TBL] [Abstract][Full Text] [Related]
7. Contact-Electrification between Two Identical Materials: Curvature Effect. Xu C; Zhang B; Wang AC; Zou H; Liu G; Ding W; Wu C; Ma M; Feng P; Lin Z; Wang ZL ACS Nano; 2019 Feb; 13(2):2034-2041. PubMed ID: 30707552 [TBL] [Abstract][Full Text] [Related]
8. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
9. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation. Xu G; Guan D; Fu J; Li X; Li A; Ding W; Zi Y ACS Appl Mater Interfaces; 2022 Feb; 14(4):5355-5362. PubMed ID: 35073035 [TBL] [Abstract][Full Text] [Related]
10. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. Shin SH; Bae YE; Moon HK; Kim J; Choi SH; Kim Y; Yoon HJ; Lee MH; Nah J ACS Nano; 2017 Jun; 11(6):6131-6138. PubMed ID: 28558185 [TBL] [Abstract][Full Text] [Related]
11. Static charge is an ionic molecular fragment. Fang Y; Ao CK; Jiang Y; Sun Y; Chen L; Soh S Nat Commun; 2024 Mar; 15(1):1986. PubMed ID: 38443343 [TBL] [Abstract][Full Text] [Related]
12. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction. Hu W; Wu W; Zhou HM Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411 [TBL] [Abstract][Full Text] [Related]
13. Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials. Šutka A; Mālnieks K; Lapčinskis L; Timusk M; Kalniņš K; Kovaļovs A; Bitenieks J; Knite M; Stevens D; Grunlan J Phys Chem Chem Phys; 2020 Jun; 22(23):13299-13305. PubMed ID: 32507872 [TBL] [Abstract][Full Text] [Related]
14. Effect of Redox Atmosphere on Contact Electrification of Polymers. Sun LL; Lin SQ; Tang W; Chen X; Wang ZL ACS Nano; 2020 Dec; 14(12):17354-17364. PubMed ID: 33210533 [TBL] [Abstract][Full Text] [Related]
15. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid-liquid interfaces. Panda PK; Singh D; Köhler MH; de Vargas DD; Wang ZL; Ahuja R Nanoscale Adv; 2022 Feb; 4(3):884-893. PubMed ID: 36131814 [TBL] [Abstract][Full Text] [Related]
16. Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Sun M; Lu Q; Wang ZL; Huang B Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951 [TBL] [Abstract][Full Text] [Related]
17. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface. Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417 [TBL] [Abstract][Full Text] [Related]
18. Contact de-electrification of electrostatically charged polymers. Soh S; Kwok SW; Liu H; Whitesides GM J Am Chem Soc; 2012 Dec; 134(49):20151-9. PubMed ID: 23153329 [TBL] [Abstract][Full Text] [Related]
19. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454 [TBL] [Abstract][Full Text] [Related]
20. Spin-selected electron transfer in liquid-solid contact electrification. Lin S; Zhu L; Tang Z; Wang ZL Nat Commun; 2022 Sep; 13(1):5230. PubMed ID: 36064784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]