These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37944998)

  • 41. Optothermal generation, trapping, and manipulation of microbubbles.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Ramírez-San-Juan JC; Zaca-Morán P; Ramírez-Ramírez J; Padilla-Vivanco A; Muñoz-Pérez FM; Ramos-García R
    Opt Express; 2020 Jun; 28(12):17672-17682. PubMed ID: 32679972
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical trapping of nanoparticles by ultrashort laser pulses.
    Usman A; Chiang WY; Masuhara H
    Sci Prog; 2013; 96(Pt 1):1-18. PubMed ID: 23738434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Opto-Thermophoretic Tweezers and Assembly.
    Li J; Lin L; Inoue Y; Zheng Y
    J Micro Nanomanuf; 2018 Dec; 6(4):0408011-4080110. PubMed ID: 35832388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplexed Near-Field Optical Trapping Exploiting Anapole States.
    Conteduca D; Brunetti G; Barth I; Quinn SD; Ciminelli C; Krauss TF
    ACS Nano; 2023 Sep; 17(17):16695-16702. PubMed ID: 37603833
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.
    Zhang P; Rufo J; Chen C; Xia J; Tian Z; Zhang L; Hao N; Zhong Z; Gu Y; Chakrabarty K; Huang TJ
    Nat Commun; 2021 Jun; 12(1):3844. PubMed ID: 34158489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticle manipulation using plasmonic optical tweezers based on particle sizes and refractive indices.
    Li H; Ren Y; Li Y; He M; Gao B; Qi H
    Opt Express; 2022 Sep; 30(19):34092-34105. PubMed ID: 36242430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap.
    Ohlinger A; Nedev S; Lutich AA; Feldmann J
    Nano Lett; 2011 Apr; 11(4):1770-4. PubMed ID: 21410159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoparticle Trapping and Characterization Using Open Microcavities.
    Trichet AA; Dolan PR; James D; Hughes GM; Vallance C; Smith JM
    Nano Lett; 2016 Oct; 16(10):6172-6177. PubMed ID: 27652604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces.
    Nan F; Yan Z
    ACS Nano; 2020 Jun; 14(6):7602-7609. PubMed ID: 32428394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gold nanoparticle trapping and delivery for therapeutic applications.
    Aziz MS; Suwanpayak N; Jalil MA; Jomtarak R; Saktioto T; Ali J; Yupapin PP
    Int J Nanomedicine; 2012; 7():11-7. PubMed ID: 22275818
    [TBL] [Abstract][Full Text] [Related]  

  • 54. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional manipulation with scanning near-field optical nanotweezers.
    Berthelot J; Aćimović SS; Juan ML; Kreuzer MP; Renger J; Quidant R
    Nat Nanotechnol; 2014 Apr; 9(4):295-9. PubMed ID: 24584272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optothermal rotation of micro-/nano-objects in liquids.
    Ding H; Chen Z; Ponce C; Zheng Y
    ArXiv; 2023 Jan; ():. PubMed ID: 36713256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers.
    Jia P; Shi H; Yan X; Pei Y; Sun X
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28731-28738. PubMed ID: 37272915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.