These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37945168)

  • 41. A microcomputer program for fitting two-substrate enzyme rate equations.
    Pinto GF; Oestreicher EG
    Comput Biol Med; 1988; 18(2):135-44. PubMed ID: 3356145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An analysis of the kinetics of enzymatic systems with unstable species.
    Garrido-del Solo C; Havsteen BH; Varon R
    Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades.
    Varón R; Havsteen BH; Valero E; Molina-Alarcón M; García-Cánovas F; García-Moreno M
    Acta Biochim Pol; 2005; 52(4):765-80. PubMed ID: 16086076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na
    Monti JLE; Montes MR; Rossi RC
    J Biol Chem; 2018 Jan; 293(4):1373-1385. PubMed ID: 29191836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme.
    Hooijmans CM; Stoop ML; Boon M; Luyben KC
    Biotechnol Bioeng; 1992 Jun; 40(1):16-24. PubMed ID: 18601039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanisms of protein aggregation from global fitting of kinetic models.
    Meisl G; Kirkegaard JB; Arosio P; Michaels TC; Vendruscolo M; Dobson CM; Linse S; Knowles TP
    Nat Protoc; 2016 Feb; 11(2):252-72. PubMed ID: 26741409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The routine fitting of kinetic data to models: a mathematical formalism for digital computers.
    BERMAN M; SHAHN E; WEISS MF
    Biophys J; 1962 May; 2(3):275-87. PubMed ID: 13867975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase.
    Kuzmic P
    Anal Biochem; 1996 Jun; 237(2):260-73. PubMed ID: 8660575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group.
    Coluzzi B; Bersani AM; Bersani E
    Math Biosci; 2018 May; 299():28-50. PubMed ID: 29197510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation.
    Goličnik M
    Anal Biochem; 2011 Apr; 411(2):303-5. PubMed ID: 21241654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Minimal Reaction-Diffusion Model of Micromixing during Stopped-Flow Experiments.
    Ditrói T; Lente G
    J Phys Chem A; 2018 Jun; 122(25):5503-5509. PubMed ID: 29873496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical integration of rate equations by computer.
    Frieden C
    Trends Biochem Sci; 1993 Feb; 18(2):58-60. PubMed ID: 8488560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic mechanism of native Escherichia coli aspartate transcarbamylase.
    Hsuanyu Y; Wedler FC
    Arch Biochem Biophys; 1987 Dec; 259(2):316-30. PubMed ID: 3322196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of Ter-Ter enzyme kinetic mechanisms by computer simulation of isotope exchange at chemical equilibrium: development and application of ISOTER, a personal-computer-based program.
    Wedler FC; Barkley RW
    Anal Biochem; 1989 Mar; 177(2):268-81. PubMed ID: 2729545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Principles of single-channel kinetic analysis.
    Qin F
    Methods Mol Biol; 2014; 1183():371-99. PubMed ID: 25023321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation.
    Liao F; Tian KC; Yang X; Zhou QX; Zeng ZC; Zuo YP
    Anal Bioanal Chem; 2003 Mar; 375(6):756-62. PubMed ID: 12664174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling and artificial intelligence approaches to enzyme systems.
    Garfinkel D; Kulikowski CA; Soo VW; Maclay J; Achs MJ
    Fed Proc; 1987 Jun; 46(8):2481-4. PubMed ID: 3297795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins.
    Lowe AR; Perez-Riba A; Itzhaki LS; Main ERG
    Biophys J; 2018 Feb; 114(3):516-521. PubMed ID: 29414697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A generalized numerical approach to rapid-equilibrium enzyme kinetics: application to 17beta-HSD.
    Kuzmic P
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):172-81. PubMed ID: 16368183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.