These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37945168)
41. A microcomputer program for fitting two-substrate enzyme rate equations. Pinto GF; Oestreicher EG Comput Biol Med; 1988; 18(2):135-44. PubMed ID: 3356145 [TBL] [Abstract][Full Text] [Related]
42. An analysis of the kinetics of enzymatic systems with unstable species. Garrido-del Solo C; Havsteen BH; Varon R Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750 [TBL] [Abstract][Full Text] [Related]
43. Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades. Varón R; Havsteen BH; Valero E; Molina-Alarcón M; García-Cánovas F; García-Moreno M Acta Biochim Pol; 2005; 52(4):765-80. PubMed ID: 16086076 [TBL] [Abstract][Full Text] [Related]
44. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na Monti JLE; Montes MR; Rossi RC J Biol Chem; 2018 Jan; 293(4):1373-1385. PubMed ID: 29191836 [TBL] [Abstract][Full Text] [Related]
45. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme. Hooijmans CM; Stoop ML; Boon M; Luyben KC Biotechnol Bioeng; 1992 Jun; 40(1):16-24. PubMed ID: 18601039 [TBL] [Abstract][Full Text] [Related]
46. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Meisl G; Kirkegaard JB; Arosio P; Michaels TC; Vendruscolo M; Dobson CM; Linse S; Knowles TP Nat Protoc; 2016 Feb; 11(2):252-72. PubMed ID: 26741409 [TBL] [Abstract][Full Text] [Related]
48. The routine fitting of kinetic data to models: a mathematical formalism for digital computers. BERMAN M; SHAHN E; WEISS MF Biophys J; 1962 May; 2(3):275-87. PubMed ID: 13867975 [TBL] [Abstract][Full Text] [Related]
49. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Kuzmic P Anal Biochem; 1996 Jun; 237(2):260-73. PubMed ID: 8660575 [TBL] [Abstract][Full Text] [Related]
50. An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group. Coluzzi B; Bersani AM; Bersani E Math Biosci; 2018 May; 299():28-50. PubMed ID: 29197510 [TBL] [Abstract][Full Text] [Related]
51. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation. Goličnik M Anal Biochem; 2011 Apr; 411(2):303-5. PubMed ID: 21241654 [TBL] [Abstract][Full Text] [Related]
52. Minimal Reaction-Diffusion Model of Micromixing during Stopped-Flow Experiments. Ditrói T; Lente G J Phys Chem A; 2018 Jun; 122(25):5503-5509. PubMed ID: 29873496 [TBL] [Abstract][Full Text] [Related]
53. Numerical integration of rate equations by computer. Frieden C Trends Biochem Sci; 1993 Feb; 18(2):58-60. PubMed ID: 8488560 [TBL] [Abstract][Full Text] [Related]
55. Analysis of Ter-Ter enzyme kinetic mechanisms by computer simulation of isotope exchange at chemical equilibrium: development and application of ISOTER, a personal-computer-based program. Wedler FC; Barkley RW Anal Biochem; 1989 Mar; 177(2):268-81. PubMed ID: 2729545 [TBL] [Abstract][Full Text] [Related]
56. Principles of single-channel kinetic analysis. Qin F Methods Mol Biol; 2014; 1183():371-99. PubMed ID: 25023321 [TBL] [Abstract][Full Text] [Related]
57. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation. Liao F; Tian KC; Yang X; Zhou QX; Zeng ZC; Zuo YP Anal Bioanal Chem; 2003 Mar; 375(6):756-62. PubMed ID: 12664174 [TBL] [Abstract][Full Text] [Related]