BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37945317)

  • 21. Urinary volatile compounds as biomarkers for lung cancer.
    Hanai Y; Shimono K; Matsumura K; Vachani A; Albelda S; Yamazaki K; Beauchamp GK; Oka H
    Biosci Biotechnol Biochem; 2012; 76(4):679-84. PubMed ID: 22484930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath.
    Soufi G; Bagheri H; Yeganeh Rad L; Minaeian S
    Anal Chim Acta; 2022 Mar; 1198():339550. PubMed ID: 35190135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry.
    Liu H; Wang H; Li C; Wang L; Pan Z; Wang L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS as a process analytical technology (PAT) tool for monitoring the cultivation of C. tetani.
    Ghader M; Shokoufi N; Es-Haghi A; Kargosha K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():222-232. PubMed ID: 29550684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discrimination and characterization of different coconut water (CW) by their phenolic composition and volatile organic compounds (VOCs) using LC-MS/MS, HS-SPME-GC-MS, and HS-GC-IMS.
    Zhang W; Chen Y; Yun Y; Li C; Fang Y; Zhang W
    J Food Sci; 2023 Sep; 88(9):3758-3772. PubMed ID: 37530630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers.
    Capone S; Tufariello M; Forleo A; Longo V; Giampetruzzi L; Radogna AV; Casino F; Siciliano P
    Biomed Chromatogr; 2018 Apr; 32(4):. PubMed ID: 29131420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative breath analysis of volatile organic compounds of lung cancer patients.
    Song G; Qin T; Liu H; Xu GB; Pan YY; Xiong FX; Gu KS; Sun GP; Chen ZD
    Lung Cancer; 2010 Feb; 67(2):227-31. PubMed ID: 19409642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics.
    Barbosa-Pereira L; Rojo-Poveda O; Ferrocino I; Giordano M; Zeppa G
    Food Res Int; 2019 Sep; 123():684-696. PubMed ID: 31285018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines.
    Li J; Xu H
    Talanta; 2017 May; 167():623-629. PubMed ID: 28340770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection technologies of volatile organic compounds in the breath for cancer diagnoses.
    Le T; Priefer R
    Talanta; 2023 Dec; 265():124767. PubMed ID: 37327663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted volatolomics of human monocytes: Comparison of 2D-GC/TOF-MS and 1D-GC/Orbitrap-MS methods.
    Zemánková K; Pavelicová K; Pompeiano A; Mravcová L; Černý M; Bendíčková K; Hortová Kohoutková M; Dryahina K; Vaculovičová M; Frič J; Vaníčková L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Nov; 1184():122975. PubMed ID: 34655893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample pH, Sulphuric Acid Concentration and Phase Ratio.
    Aggarwal P; Baker J; Boyd MT; Coyle S; Probert C; Chapman EA
    Metabolites; 2020 Nov; 10(12):. PubMed ID: 33255680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrimination and Characterization of the Volatile Organic Compounds in
    Li C; Wan H; Wu X; Yin J; Zhu L; Chen H; Song X; Han L; Yang W; Yu H; Li Z
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings.
    Mochalski P; Krapf K; Ager C; Wiesenhofer H; Agapiou A; Statheropoulos M; Fuchs D; Ellmerer E; Buszewski B; Amann A
    Toxicol Mech Methods; 2012 Sep; 22(7):502-11. PubMed ID: 22482743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds.
    Pellati F; Prencipe FP; Benvenuti S
    J Pharm Biomed Anal; 2013 Oct; 84():103-11. PubMed ID: 23807002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry.
    Ligor M; Ligor T; Bajtarevic A; Ager C; Pienz M; Klieber M; Denz H; Fiegl M; Hilbe W; Weiss W; Lukas P; Jamnig H; Hackl M; Buszewski B; Miekisch W; Schubert J; Amann A
    Clin Chem Lab Med; 2009; 47(5):550-60. PubMed ID: 19397483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Searching for Potential Markers of Glomerulopathy in Urine by HS-SPME-GC×GC TOFMS.
    Ligor T; Zawadzka J; Strączyński G; González Paredes RM; Wenda-Piesik A; Ratiu IA; Muszytowski M
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33804943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients.
    Monteiro M; Moreira N; Pinto J; Pires-Luís AS; Henrique R; Jerónimo C; Bastos ML; Gil AM; Carvalho M; Guedes de Pinho P
    J Cell Mol Med; 2017 Sep; 21(9):2092-2105. PubMed ID: 28378454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemotherapy control by breath profile with application of SPME-GC/MS method.
    Ulanowska A; Trawińska E; Sawrycki P; Buszewski B
    J Sep Sci; 2012 Nov; 35(21):2908-13. PubMed ID: 23001965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.