These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3794548)

  • 41. Effects of dietary fats on the activity of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol synthesis in the liver of fasted-refed rats.
    Ide T; Okamatsu H; Sugano M
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(5):535-46. PubMed ID: 731337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isopentenoid synthesis in isolated embryonic Drosophila cells. Possible regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by shunted mevalonate carbon.
    Havel C; Rector ER; Watson JA
    J Biol Chem; 1986 Aug; 261(22):10150-6. PubMed ID: 3733706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Morris hepatoma 7800 after intravenous injection of mevalonic acid.
    George R; Goldfarb S
    Cancer Res; 1980 Dec; 40(12):4717-21. PubMed ID: 7438103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo modulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase, reductase kinase, and reductase kinase kinase by mevalonolactone.
    Beg ZH; Stonik JA; Brewer HB
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7293-7. PubMed ID: 6594693
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Keller RK; Zhao Z; Chambers C; Ness GC
    Arch Biochem Biophys; 1996 Apr; 328(2):324-30. PubMed ID: 8645011
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of exercise on plasma and liver lipids of rats. IV. Effects of exercise on hepatic cholesterogenesis and fecal steroid excretion in rats.
    Fukuda N; Ide T; Kida Y; Takamine K; Sugano M
    Nutr Metab; 1979; 23(4):256-65. PubMed ID: 440629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of sterol synthesis by the monoterpene perillyl alcohol is unaffected by competitive 3-hydroxy-3-methylglutaryl-CoA reductase inhibition.
    Cerda SR; Wilkinson J; Branch SK; Broitman SA
    Lipids; 1999 Jun; 34(6):605-15. PubMed ID: 10405975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue.
    Rao AV; Ramakrishnan S
    Clin Chem; 1975 Sep; 21(10):1523-5. PubMed ID: 1157326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationships between cholesterogenesis, microsomal sterols and HMG-CoA reductase in the perfused rat liver.
    Goh EH
    Lipids; 1980 Sep; 15(9):624-30. PubMed ID: 7421417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous determination of plasma mevalonate and 7alpha-hydroxy-4-cholesten-3-one levels in hyperlipoproteinemia: convenient indices for estimating hepatic defects of cholesterol and bile acid syntheses and biliary cholesterol supersaturation.
    Shoda J; Miyamoto J; Kano M; Ikegami T; Matsuzaki Y; Tanaka N; Osuga T; Miyazaki H
    Hepatology; 1997 Jan; 25(1):18-26. PubMed ID: 8985259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Indirect assay of beta hydroxy beta methyl glutaryl CoA reductase in the sera of leprosy patients--a further probe into cholesterol metabolism.
    Kannan KB; Venkatesan K; Bharadwaj VP; Sritharan V; Katoch K
    Lepr India; 1982 Apr; 54(2):242-5. PubMed ID: 7132293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of lipoprotein-X in the pathogenesis of cholestatic hypercholesterolemia. Uptake of lipoprotein-X and its effect on 3-hydroxy-3-methylglutaryl coenzyme A reductase and chylomicron remnant removal in human fibroblasts, lymphocytes, and in the rat.
    Walli AK; Seidel D
    J Clin Invest; 1984 Sep; 74(3):867-79. PubMed ID: 6470142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of bile acid synthesis. IV. Interrelationship between cholesterol and bile acid biosynthesis pathways.
    Pandak WM; Heuman DM; Hylemon PB; Vlahcevic ZR
    J Lipid Res; 1990 Jan; 31(1):79-90. PubMed ID: 2313206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mevalonate utilization in Pseudomonas sp. M. Purification and characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Gill JF; Beach MJ; Rodwell VW
    J Biol Chem; 1985 Aug; 260(16):9393-8. PubMed ID: 4019479
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Geranylgeranyl-pyrophosphate, an isoprenoid of mevalonate cascade, is a critical compound for rat primary cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-methylglutaryl-CoA reductase inhibition.
    Tanaka T; Tatsuno I; Uchida D; Moroo I; Morio H; Nakamura S; Noguchi Y; Yasuda T; Kitagawa M; Saito Y; Hirai A
    J Neurosci; 2000 Apr; 20(8):2852-9. PubMed ID: 10751437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in anencephalic and normal human fetal liver.
    Carr BR; Rainey WE; Mason JI
    J Clin Invest; 1985 Nov; 76(5):1946-9. PubMed ID: 2997298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the interrelationship between hepatic carnitine, fatty acid oxidation, and triglyceride biosynthesis in nephrosis.
    al-Shurbaji A; Berglund L; Berge RK; Cederblad G; Humble E
    Lipids; 1997 Aug; 32(8):847-52. PubMed ID: 9270976
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyperlipoproteinemia of aminonucleoside-induced nephrotic syndrome--modulation by glucocorticoids and triiodothyronine.
    Shafrir E
    Isr J Med Sci; 1996 Jun; 32(6):390-7. PubMed ID: 8682644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level.
    Peffley DM; Gayen AK
    J Nutr; 2003 Jan; 133(1):38-44. PubMed ID: 12514264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.