BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37945515)

  • 1. Three-Dimensional Printing of Triboelectric Nanogenerators by Digital Light Processing Technique for Mechanical Energy Harvesting.
    Chiappone A; Roppolo I; Scavino E; Mogli G; Pirri CF; Stassi S
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53974-53983. PubMed ID: 37945515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites.
    Shin J; Ji S; Cho H; Park J
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly, compact, and cost-efficient triboelectric nanogenerator for renewable energy harvesting and smart motion sensing.
    Delgado-Alvarado E; Martínez-Castillo J; Morales-González EA; González-Calderón JA; Armendáriz-Alonso EF; Rodríguez-Liñán GM; López-Esparza R; Hernández-Hernández J; Elvira-Hernández EA; Herrera-May AL
    Heliyon; 2024 Apr; 10(7):e28482. PubMed ID: 38601514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Portable Triboelectric Nanogenerator Based on Dehydrated Nopal Powder for Powering Electronic Devices.
    Elvira-Hernández EA; Nava-Galindo OI; Martínez-Lara EK; Delgado-Alvarado E; López-Huerta F; De León A; Gallardo-Vega C; Herrera-May AL
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer Materials for High-Performance Triboelectric Nanogenerators.
    Chen A; Zhang C; Zhu G; Wang ZL
    Adv Sci (Weinh); 2020 Jul; 7(14):2000186. PubMed ID: 32714748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications.
    Li H; Zhang Y; Wu Y; Zhao H; Wang W; He X; Zheng H
    Beilstein J Nanotechnol; 2021; 12():402-412. PubMed ID: 34012760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors.
    Zhao J; Wang Y; Song X; Zhou A; Ma Y; Wang X
    Nanoscale; 2021 Nov; 13(43):18363-18373. PubMed ID: 34723308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator.
    Chen J; Tang N; Cheng L; Zheng Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na
    Cui C; Wang X; Yi Z; Yang B; Wang X; Chen X; Liu J; Yang C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3652-3659. PubMed ID: 29313665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators.
    Kim H; Nguyen DC; Luu TT; Ding Z; Lin ZH; Choi D
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring.
    Wu M; Li Z
    Heliyon; 2024 May; 10(10):e30845. PubMed ID: 38765035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator.
    Sahoo M; Lai SN; Wu JM; Wu MC; Lai CS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing.
    Guo H; Li T; Cao X; Xiong J; Jie Y; Willander M; Cao X; Wang N; Wang ZL
    ACS Nano; 2017 Jan; 11(1):856-864. PubMed ID: 28056170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application.
    Chen Y; Ling Y; Yin R
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive.
    Wang SC; Zhang B; Kang L; Liang C; Chen D; Liu G; Guo X
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties.
    Gunawardhana KRS; Wanasekara ND; Wijayantha KG; Dharmasena RDI
    ACS Appl Electron Mater; 2022 Feb; 4(2):678-688. PubMed ID: 35573892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR.
    Si J; Duan R; Zhang M; Liu X
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals.
    Han Y; Han Y; Zhang X; Li L; Zhang C; Liu J; Lu G; Yu HD; Huang W
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16442-16450. PubMed ID: 32172560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.