These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37945515)

  • 21. Biopolymer Materials in Triboelectric Nanogenerators: A Review.
    Zhu Q; Sun E; Zhao Z; Wu T; Meng S; Ma Z; Shoaib M; Ur Rehman H; Cao X; Wang N
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications.
    Patnam H; Graham SA; Manchi P; Paranjape MV; Yu JS
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16768-16777. PubMed ID: 36973637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting.
    Cao M; Chen Y; Sha J; Xu Y; Chen S; Xu F
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy.
    Qiu Y; Yang D; Li B; Shao S; Hu L
    RSC Adv; 2018 Jul; 8(46):26243-26250. PubMed ID: 35541967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of PI/PVDF-TrFE Composite Nanofiber-Based Triboelectric Nanogenerators Depending on the Type of the Electrospinning System.
    Kim Y; Wu X; Lee C; Oh JH
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36967-36975. PubMed ID: 34339166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition.
    Kim YW; Akin S; Yun H; Xu S; Wu W; Jun MB
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46410-46420. PubMed ID: 36198071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embroidery Triboelectric Nanogenerator for Energy Harvesting.
    Tahir HR; Malengier B; Sujan S; Van Langenhove L
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators.
    Nurmakanov Y; Kalimuldina G; Nauryzbayev G; Adair D; Bakenov Z
    Nanoscale Res Lett; 2021 Jul; 16(1):122. PubMed ID: 34328566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manufacturing Technics for Fabric/Fiber-Based Triboelectric Nanogenerators: From Yarns to Micro-Nanofibers.
    Fan C; Zhang Y; Liao S; Zhao M; Lv P; Wei Q
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyvinyl alcohol-based economical triboelectric nanogenerator for self-powered energy harvesting applications.
    Amini S; Muktar Ahmed RFS; Ankanathappa SM; Sannathammegowda K
    Nanotechnology; 2023 Nov; 35(3):. PubMed ID: 37857275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting the Power and Lowering the Impedance of Triboelectric Nanogenerators through Manipulating the Permittivity for Wearable Energy Harvesting.
    Wang HL; Guo ZH; Zhu G; Pu X; Wang ZL
    ACS Nano; 2021 Apr; 15(4):7513-7521. PubMed ID: 33856770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triboelectric Nanogenerator with Low Crest Factor via Precise Phase Difference Design Realized by 3D Printing.
    Hu Y; Li X; Zhao Z; Zhang C; Zhou L; Li Y; Liu Y; Wang J; Wang ZL
    Small Methods; 2021 Dec; 5(12):e2100936. PubMed ID: 34928028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Integration of Triboelectric Nanogenerators and Supercapacitors: The Key Role of Cellular Materials.
    Meng J; Zhao Z; Cao X; Wang N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing.
    Dhakar L; Gudla S; Shan X; Wang Z; Tay FE; Heng CH; Lee C
    Sci Rep; 2016 Feb; 6():22253. PubMed ID: 26905285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Forest-Based Triboelectric Energy Harvester.
    Edberg J; Mulla MY; Hosseinaei O; Alvi NUH; Beni V
    Glob Chall; 2022 Oct; 6(10):2200058. PubMed ID: 36275357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives.
    Matin Nazar A; Mohsenian R; Rayegani A; Shadfar M; Jiao P
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respiration-driven triboelectric nanogenerators for biomedical applications.
    Li J; Long Y; Yang F; Wang X
    EcoMat; 2020 Sep; 2(3):e12045. PubMed ID: 34172981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paper-based triboelectric nanogenerators and their applications: a review.
    Han J; Xu N; Liang Y; Ding M; Zhai J; Sun Q; Wang ZL
    Beilstein J Nanotechnol; 2021; 12():151-171. PubMed ID: 33614382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors.
    Lee JP; Lee JW; Baik JM
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.