These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 37945515)

  • 61. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.
    Feng PY; Xia Z; Sun B; Jing X; Li H; Tao X; Mi HY; Liu Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16916-16927. PubMed ID: 33819011
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations.
    Wu C; Park JH; Koo B; Chen X; Wang ZL; Kim TW
    ACS Nano; 2018 Oct; 12(10):9947-9957. PubMed ID: 30272956
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Polyoxometalates-Based Semi-flexible Metal-Semiconductor Triboelectric Nanogenerators for Low Frequency and Small Amplitude Mechanical Energy Harvesting.
    Ma C; Wang T; Li F; Guan H; Chen W; Zhang L; Zheng Y; Wang C; Tang Q; Chen W
    Chemistry; 2021 Jul; 27(39):10115-10122. PubMed ID: 34101277
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent Progress of Advanced Materials for Triboelectric Nanogenerators.
    Liu D; Zhang J; Cui S; Zhou L; Gao Y; Wang ZL; Wang J
    Small Methods; 2023 Oct; 7(10):e2300562. PubMed ID: 37330665
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring.
    Lian M; Sun J; Jiang D; Xu M; Wu Z; Bin Xu B; Algadi H; Huang M; Guo Z
    Nanotechnology; 2022 Oct; 34(2):. PubMed ID: 36306413
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improved Electrical Output Performance of Cellulose-Based Triboelectric Nanogenerators Enabled by Negative Triboelectric Materials.
    Wang F; Wang S; Liu Y; Hou T; Wu Z; Qian J; Zhao Z; Wang L; Jia C; Ma S
    Small; 2024 May; 20(19):e2308195. PubMed ID: 38072819
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable/Wearable Applications.
    Jeong J; Jeon S; Ma X; Kwon YW; Shin DM; Hong SW
    Adv Mater; 2021 Oct; 33(39):e2102530. PubMed ID: 34355431
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance.
    Jang S; Kim H; Oh JH
    Nanoscale; 2017 Sep; 9(35):13034-13041. PubMed ID: 28836643
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Suppressing Thermal Negative Effect and Maintaining High-Temperature Steady Electrical Performance of Triboelectric Nanogenerators by Employing Phase Change Material.
    Cao R; Xia Y; Wang J; Jia X; Jia C; Zhu S; Zhang W; Gao X; Zhang X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41657-41668. PubMed ID: 34432426
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation.
    Han J; Wang Y; Ma Y; Wang C
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31795-31802. PubMed ID: 37341597
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures.
    Kim DE; Shin S; Zhang G; Choi D; Jung J
    RSC Adv; 2023 Apr; 13(16):11142-11149. PubMed ID: 37056967
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Micropillar-Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation under In-Plane Stimuli.
    Chun S; Pang C; Cho SB
    Adv Mater; 2020 Jan; 32(2):e1905539. PubMed ID: 31709682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing.
    Li J; Liu Y; Wu M; Yao K; Gao Z; Gao Y; Huang X; Wong TH; Zhou J; Li D; Li H; Li J; Huang Y; Shi R; Yu J; Yu X
    Fundam Res; 2023 Jan; 3(1):111-117. PubMed ID: 38933565
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Laser-Induced Graphene Triboelectric Nanogenerators.
    Stanford MG; Li JT; Chyan Y; Wang Z; Wang W; Tour JM
    ACS Nano; 2019 Jun; 13(6):7166-7174. PubMed ID: 31117382
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization.
    Vatankhah E; Tadayon M; Ramakrishna S
    Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils.
    Ba YY; Bao JF; Deng HT; Wang ZY; Li XW; Gong T; Huang W; Zhang XS
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42859-42867. PubMed ID: 32856889
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy.
    Gu GQ; Han CB; Tian JJ; Lu CX; He C; Jiang T; Li Z; Wang ZL
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11882-11888. PubMed ID: 28299934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Trap Distribution and Conductivity Synergic Optimization of High-Performance Triboelectric Nanogenerators for Self-Powered Devices.
    Lv S; Zhang X; Huang T; Yu H; Zhang Q; Zhu M
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2566-2575. PubMed ID: 33411491
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aim high energy conversion efficiency in triboelectric nanogenerators.
    Yoon HJ; Kwak SS; Kim SM; Kim SW
    Sci Technol Adv Mater; 2020 Sep; 21(1):683-688. PubMed ID: 33061840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.