These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37945530)

  • 41. Self-Assembly of Chiral Plasmonic Nanostructures.
    Lan X; Wang Q
    Adv Mater; 2016 Dec; 28(47):10499-10507. PubMed ID: 27327654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circular Dichroism in Off-Resonantly Coupled Plasmonic Nanosystems.
    Ferry VE; Hentschel M; Alivisatos AP
    Nano Lett; 2015 Dec; 15(12):8336-41. PubMed ID: 26569468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single Gold Nanobipyramids Sensing the Chirality of Amyloids.
    Lipok M; Obstarczyk P; Żak A; Olesiak-Bańska J
    J Phys Chem Lett; 2023 Dec; 14(49):11084-11091. PubMed ID: 38051220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.
    Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic Core-Satellites Nanostructures with High Chirality and Bioproperty.
    Xu L; Hao C; Yin H; Liu L; Ma W; Wang L; Kuang H; Xu C
    J Phys Chem Lett; 2013 Jul; 4(14):2379-84. PubMed ID: 26704291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality.
    Tao Y; Sun L; Liu C; Yang G; Sun X; Zhang Q
    Small; 2023 Jul; 19(30):e2301218. PubMed ID: 37029697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu2 O Nanorods.
    Zhang S; Jiang R; Guo Y; Yang B; Chen XL; Wang J; Zhao Y
    Small; 2016 Aug; 12(31):4264-76. PubMed ID: 27374920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabricating chiroptical starfruit-like Au nanoparticles via interface modulation of chiral thiols.
    Yan J; Chen Y; Hou S; Chen J; Meng D; Zhang H; Fan H; Ji Y; Wu X
    Nanoscale; 2017 Aug; 9(31):11093-11102. PubMed ID: 28741642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circular dichroism from single plasmonic nanostructures with extrinsic chirality.
    Lu X; Wu J; Zhu Q; Zhao J; Wang Q; Zhan L; Ni W
    Nanoscale; 2014 Nov; 6(23):14244-53. PubMed ID: 25307740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods.
    Lin X; Zhou Y; Pan X; Zhang Q; Hu N; Li H; Wang L; Xue Q; Zhang W; Ni W
    Nanoscale; 2023 Jun; 15(25):10667-10676. PubMed ID: 37314106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plexcitonic optical chirality in the chiral plasmonic structure-microcavity-exciton strong coupling system.
    Deng X; Li J; Jin L; Wang Y; Liang K; Yu L
    Opt Express; 2023 Sep; 31(20):32082-32092. PubMed ID: 37859018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies.
    Han B; Zhu Z; Li Z; Zhang W; Tang Z
    J Am Chem Soc; 2014 Nov; 136(46):16104-7. PubMed ID: 25347381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-specific chiroptical responses of hollow gold nanoprisms.
    Hazra B; Dey J; Chandra M
    Phys Chem Chem Phys; 2018 Nov; 20(43):27675-27683. PubMed ID: 30375600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chiroptical spectroscopy of a freely diffusing single nanoparticle.
    Sachs J; Günther JP; Mark AG; Fischer P
    Nat Commun; 2020 Sep; 11(1):4513. PubMed ID: 32908138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revealing the Chiroptical Response of Plasmonic Nanostructures at the Nanofemto Scale.
    Zu S; Sun Q; Cao E; Oshikiri T; Misawa H
    Nano Lett; 2021 Jun; 21(11):4780-4786. PubMed ID: 34048263
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amplification of chiroptical activity of chiral biomolecules by surface plasmons.
    Maoz BM; Chaikin Y; Tesler AB; Bar Elli O; Fan Z; Govorov AO; Markovich G
    Nano Lett; 2013 Mar; 13(3):1203-9. PubMed ID: 23409980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity.
    Ni B; Mychinko M; Gómez-Graña S; Morales-Vidal J; Obelleiro-Liz M; Heyvaert W; Vila-Liarte D; Zhuo X; Albrecht W; Zheng G; González-Rubio G; Taboada JM; Obelleiro F; López N; Pérez-Juste J; Pastoriza-Santos I; Cölfen H; Bals S; Liz-Marzán LM
    Adv Mater; 2023 Jan; 35(1):e2208299. PubMed ID: 36239273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality-Dependent Photocatalysis.
    Tan L; Yu SJ; Jin Y; Li J; Wang PP
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202112400. PubMed ID: 34936187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.