These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37945649)
1. Disturbance rejection model predictive control of lower limb rehabilitation exoskeleton. Jin X; Guo J Sci Rep; 2023 Nov; 13(1):19463. PubMed ID: 37945649 [TBL] [Abstract][Full Text] [Related]
2. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
3. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. Wang Y; Wang H; Tian Y ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010 [TBL] [Abstract][Full Text] [Related]
4. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related]
5. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. Long Y; Du Z; Cong L; Wang W; Zhang Z; Dong W ISA Trans; 2017 Mar; 67():389-397. PubMed ID: 28108003 [TBL] [Abstract][Full Text] [Related]
6. Output feedback model predictive control of hydraulic systems with disturbances compensation. Gu W; Yao J; Yao Z; Zheng J ISA Trans; 2019 May; 88():216-224. PubMed ID: 30580881 [TBL] [Abstract][Full Text] [Related]
7. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
8. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
9. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
10. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
11. Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training. Yang Y; Huang D; Ma L; Liu X; Li Y ISA Trans; 2024 Aug; 151():143-152. PubMed ID: 38853110 [TBL] [Abstract][Full Text] [Related]
12. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton. Sun W; Lin JW; Su SF; Wang N; Er MJ IEEE Trans Cybern; 2021 Mar; 51(3):1099-1109. PubMed ID: 32112693 [TBL] [Abstract][Full Text] [Related]
13. Designing a robust controller for a lower limb exoskeleton to treat an individual with crouch gait pattern in the presence of actuator saturation. Khamar M; Edrisi M; Forghany S ISA Trans; 2022 Jul; 126():513-532. PubMed ID: 34479722 [TBL] [Abstract][Full Text] [Related]
14. Sliding Mode-Based Active Disturbance Rejection Control of Assistive Exoskeleton Device for Rehabilitation of Disabled Lower Limbs. Alawad NA; Humaidi AJ; Alaraji AS An Acad Bras Cienc; 2023; 95(2):e20220680. PubMed ID: 37341275 [TBL] [Abstract][Full Text] [Related]
15. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. Pérez-San Lázaro R; Salgado I; Chairez I ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173 [TBL] [Abstract][Full Text] [Related]
16. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related]
17. Safe MPC-based disturbance rejection control for uncertain nonlinear systems with state constraints. Zhang Z; Ran M; Dong C ISA Trans; 2024 Oct; 153():233-242. PubMed ID: 39127553 [TBL] [Abstract][Full Text] [Related]
18. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Chen W; Li Z; Cui X; Zhang J; Bai S Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848 [TBL] [Abstract][Full Text] [Related]
19. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
20. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]