These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37945651)
1. Competing length scales and 2D versus 3D dimensionality in relatively thick superconducting NbN films. Belogolovskii M; Poláčková M; Zhitlukhina E; Grančič B; Satrapinskyy L; Gregor M; Plecenik T Sci Rep; 2023 Nov; 13(1):19450. PubMed ID: 37945651 [TBL] [Abstract][Full Text] [Related]
2. Complex Phase-Fluctuation Effects Correlated with Granularity in Superconducting NbN Nanofilms. Sharma M; Singh M; Rakshit RK; Singh SP; Fretto M; De Leo N; Perali A; Pinto N Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500732 [TBL] [Abstract][Full Text] [Related]
3. CMOS-Compatible Ultrathin Superconducting NbN Thin Films Deposited by Reactive Ion Sputtering on 300 mm Si Wafer. Yang Z; Wei X; Roy P; Zhang D; Lu P; Dhole S; Wang H; Cucciniello N; Patibandla N; Chen Z; Zeng H; Jia Q; Zhu M Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068212 [TBL] [Abstract][Full Text] [Related]
4. NbN films on flexible and thickness controllable dielectric substrates. Shi H; Liang L; Huang Y; Bao H; Jin B; Wang Z; Jia X; Kang L; Xu W; Chen J; Wu P Sci Rep; 2022 Jun; 12(1):10662. PubMed ID: 35739174 [TBL] [Abstract][Full Text] [Related]
5. Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms. Pinto N; Rezvani SJ; Perali A; Flammia L; Milošević MV; Fretto M; Cassiago C; De Leo N Sci Rep; 2018 Mar; 8(1):4710. PubMed ID: 29549273 [TBL] [Abstract][Full Text] [Related]
6. Effects of interlayer coupling on the irreversibility lines of NbN/AlN superconducting multilayers. Sadki ES; Barber ZH; Lloyd SJ; Blamire MG; Campbell AM Phys Rev Lett; 2000 Nov; 85(19):4168-71. PubMed ID: 11056651 [TBL] [Abstract][Full Text] [Related]
7. Critical Role Played by Interface Engineering in Weakening Thickness Dependence of Superconducting and Structural Properties of FeSe Song J; Xu Z; Xiong X; Yuan W; Dong C; Sun Q; Tang M; Chen W; Tian H; Li J; Ma Y ACS Appl Mater Interfaces; 2023 May; 15(21):26215-26224. PubMed ID: 37212392 [TBL] [Abstract][Full Text] [Related]
8. Effect of pressure on the Ginzburg-Landau parameter kappa=lambda/xi in YB6. Khasanov R; Häfliger PS; Shitsevalova N; Dukhnenko A; Brütsch R; Keller H Phys Rev Lett; 2006 Oct; 97(15):157002. PubMed ID: 17155351 [TBL] [Abstract][Full Text] [Related]
10. Evidence for isotropic s-wave superconductivity in high-entropy alloys. Leung CKW; Zhang X; von Rohr F; Lortz R; Jäck B Sci Rep; 2022 Jul; 12(1):12773. PubMed ID: 35896621 [TBL] [Abstract][Full Text] [Related]
11. Superconductivity in 4-Angstrom carbon nanotubes--a short review. Wang Z; Shi W; Lortz R; Sheng P Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840 [TBL] [Abstract][Full Text] [Related]
12. High critical field NbC superconductor on carbon spheres. Bhattacharjee K; Pati SP; Maity A Phys Chem Chem Phys; 2016 Jun; 18(22):15218-22. PubMed ID: 27212586 [TBL] [Abstract][Full Text] [Related]
13. Effect of two length scales on the properties of MgB(2) for arbitrary applied magnetic field. Karmakar M; Dey B J Phys Condens Matter; 2010 May; 22(20):205701. PubMed ID: 21393710 [TBL] [Abstract][Full Text] [Related]
14. Superconducting 3 Tanaka Y; Matsuoka H; Nakano M; Wang Y; Sasakura S; Kobayashi K; Iwasa Y Nano Lett; 2020 Mar; 20(3):1725-1730. PubMed ID: 32013454 [TBL] [Abstract][Full Text] [Related]
15. Characteristic Times for Gap Relaxation and Heat Escape in Nanothin NbTi Superconducting Filaments: Thickness Dependence and Effect of Substrate. Harrabi K; Mekki A; Milošević MV Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404312 [TBL] [Abstract][Full Text] [Related]
16. Unusual Sequence of the Critical Magnetic Fields Ovchinnikov YN; Efremov DV J Supercond Nov Magn; 2024; 37(2):325-338. PubMed ID: 38343881 [TBL] [Abstract][Full Text] [Related]
17. Large Enhancement of Critical Current in Superconducting Devices by Gate Voltage. Rocci M; Suri D; Kamra A; Gilvânia Vilela ; Takamura Y; Nemes NM; Martinez JL; Hernandez MG; Moodera JS Nano Lett; 2021 Jan; 21(1):216-221. PubMed ID: 33275436 [TBL] [Abstract][Full Text] [Related]
18. Quasi-two-dimensional superconductivity in FeSe0.3Te0.7 thin films and electric-field modulation of superconducting transition. Lin Z; Mei C; Wei L; Sun Z; Wu S; Huang H; Zhang S; Liu C; Feng Y; Tian H; Yang H; Li J; Wang Y; Zhang G; Lu Y; Zhao Y Sci Rep; 2015 Sep; 5():14133. PubMed ID: 26382136 [TBL] [Abstract][Full Text] [Related]
19. Gate dependence of upper critical field in superconducting (110) LaAlO3/SrTiO3 interface. Shen SC; Chen BB; Xue HX; Cao G; Li CJ; Wang XX; Hong YP; Guo GP; Dou RF; Xiong CM; He L; Nie JC Sci Rep; 2016 Jul; 6():28379. PubMed ID: 27378271 [TBL] [Abstract][Full Text] [Related]
20. How to Choose the Superconducting Material Law for the Modelling of 2G-HTS Coils. Robert BC; Fareed MU; Ruiz HS Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]