These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37946088)
41. Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China. Yu H; Li T; Liu Y; Ma L Chemosphere; 2019 Sep; 230():498-509. PubMed ID: 31125878 [TBL] [Abstract][Full Text] [Related]
42. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. Kuppusamy S; Thavamani P; Megharaj M; Venkateswarlu K; Lee YB; Naidu R J Hazard Mater; 2016 Nov; 317():169-179. PubMed ID: 27267691 [TBL] [Abstract][Full Text] [Related]
43. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Stokes JD; Wilkinson A; Reid BJ; Jones KC; Semple KT Environ Toxicol Chem; 2005 Jun; 24(6):1325-30. PubMed ID: 16117107 [TBL] [Abstract][Full Text] [Related]
44. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils--a review. Anyika C; Abdul Majid Z; Ibrahim Z; Zakaria MP; Yahya A Environ Sci Pollut Res Int; 2015 Mar; 22(5):3314-41. PubMed ID: 25345923 [TBL] [Abstract][Full Text] [Related]
45. Effects of different organic substrate compositions on the decontamination of aged PAH-polluted soils through outdoor co-composting. Němcová K; Lhotský O; Stavělová M; Komárek M; Semerád J; Filipová A; Najmanová P; Cajthaml T Chemosphere; 2024 Aug; 362():142580. PubMed ID: 38866336 [TBL] [Abstract][Full Text] [Related]
46. AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. Andersson E; Rotander A; von Kronhelm T; Berggren A; Ivarsson P; Hollert H; Engwall M Environ Sci Pollut Res Int; 2009 Jul; 16(5):521-30. PubMed ID: 19296140 [TBL] [Abstract][Full Text] [Related]
47. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. Yamini V; Rajeswari VD Chemosphere; 2023 Jul; 329():138707. PubMed ID: 37068614 [TBL] [Abstract][Full Text] [Related]
48. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Coulon F; Pelletier E; Gourhant L; Delille D Chemosphere; 2005 Mar; 58(10):1439-48. PubMed ID: 15686763 [TBL] [Abstract][Full Text] [Related]
49. Nitrogen addition enhanced the polycyclic aromatic hydrocarbons dissipation through increasing the abundance of related degrading genes in the soils. Wang J; Yang Z; Zhou X; Waigi MG; Gudda FO; Odinga ES; Mosa A; Ling W J Hazard Mater; 2022 Aug; 435():129034. PubMed ID: 35525013 [TBL] [Abstract][Full Text] [Related]
50. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Fava F; Berselli S; Conte P; Piccolo A; Marchetti L Biotechnol Bioeng; 2004 Oct; 88(2):214-23. PubMed ID: 15449300 [TBL] [Abstract][Full Text] [Related]
51. Identification and analysis of polyaromatic hydrocarbons (PAHs)--biodegrading bacterial strains from refinery soil of India. Chaudhary P; Sahay H; Sharma R; Pandey AK; Singh SB; Saxena AK; Nain L Environ Monit Assess; 2015 Jun; 187(6):391. PubMed ID: 26026847 [TBL] [Abstract][Full Text] [Related]
52. Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Bueno-Montes M; Springael D; Ortega-Calvo JJ Environ Sci Technol; 2011 Apr; 45(7):3019-26. PubMed ID: 21375290 [TBL] [Abstract][Full Text] [Related]
53. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Li X; Lin X; Li P; Liu W; Wang L; Ma F; Chukwuka KS J Hazard Mater; 2009 Dec; 172(2-3):601-5. PubMed ID: 19682791 [TBL] [Abstract][Full Text] [Related]
54. Soil physiochemical properties and bacterial community changes under long-term polycyclic aromatic hydrocarbon stress insitu steel plant soils. Yang L; Han D; Jin D; Zhang J; Shan Y; Wan M; Hu Y; Jiao W Chemosphere; 2023 Sep; 334():138926. PubMed ID: 37182712 [TBL] [Abstract][Full Text] [Related]
55. Biochar alters the persistence of PAHs in soils by affecting soil physicochemical properties and microbial diversity: A meta-analysis. Li D; Su P; Tang M; Zhang G Ecotoxicol Environ Saf; 2023 Nov; 266():115589. PubMed ID: 37839191 [TBL] [Abstract][Full Text] [Related]
56. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Posada-Baquero R; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747 [TBL] [Abstract][Full Text] [Related]
57. Biochar enhanced polycyclic aromatic hydrocarbons degradation in soil planted with ryegrass: Bacterial community and degradation gene expression mechanisms. Zhao X; Miao R; Guo M; Shang X; Zhou Y; Zhu J Sci Total Environ; 2022 Sep; 838(Pt 2):156076. PubMed ID: 35597344 [TBL] [Abstract][Full Text] [Related]
58. [Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil]. Zheng M; Zhao Y; Miao L; Gao X; Liu Z Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3535-3548. PubMed ID: 34708609 [TBL] [Abstract][Full Text] [Related]
59. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Liu Q; Tang J; Liu X; Song B; Zhen M; Ashbolt NJ J Appl Microbiol; 2017 Oct; 123(4):875-885. PubMed ID: 28763134 [TBL] [Abstract][Full Text] [Related]
60. Enhancement of soil high-molecular-weight polycyclic aromatic hydrocarbon degradation by Fusarium sp. ZH-H2 using different carbon sources. Zhang X; Zhang Y; Wang X; Zhang L; Ning G; Feng S; Zhang A; Yang Z Ecotoxicol Environ Saf; 2023 Jan; 249():114379. PubMed ID: 36508814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]