BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 37946208)

  • 21. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes.
    Oxborough RM; Kitau J; Matowo J; Mndeme R; Feston E; Boko P; Odjo A; Metonnou CG; Irish S; N'guessan R; Mosha FW; Rowland MW
    Trans R Soc Trop Med Hyg; 2010 Oct; 104(10):639-45. PubMed ID: 20850003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr long-lasting insecticidal nets on density of primary malaria vectors Anopheles gambiae s.s. and Anopheles coluzzii in Benin: a secondary analysis of a cluster randomised controlled trial.
    Yovogan B; Sovi A; Djènontin A; Adoha CJ; Akinro B; Accrombessi M; Dangbénon E; Koukpo CZ; Affolabi ZK; Agboho PA; Kpanou CD; Assongba L; Missihoun AA; Tokponnon TF; Agbangla C; Padonou GG; Messenger LA; Ngufor C; Cook J; Akogbéto MC; Protopopoff N
    Parasit Vectors; 2024 Jan; 17(1):7. PubMed ID: 38178161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of standard pyrethroid based LNs (MiraNet and MagNet) in experimental huts against pyrethroid resistant Anopheles gambiae s.l. M'bé, Côte d'Ivoire: Potential for impact on vectorial capacity.
    Oumbouke WA; Koffi AA; Alou LPA; Rowland M; N'Guessan R
    PLoS One; 2019; 14(4):e0215074. PubMed ID: 30973948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors.
    Raghavendra K; Barik TK; Sharma P; Bhatt RM; Srivastava HC; Sreehari U; Dash AP
    Malar J; 2011 Jan; 10():16. PubMed ID: 21266037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Which indoor residual spraying insecticide best complements standard pyrethroid long-lasting insecticidal nets for improved control of pyrethroid resistant malaria vectors?
    Syme T; Fongnikin A; Todjinou D; Govoetchan R; Gbegbo M; Rowland M; Akogbeto M; Ngufor C
    PLoS One; 2021; 16(1):e0245804. PubMed ID: 33507978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of next-generation, dual-active-ingredient, long-lasting insecticidal net deployment on insecticide resistance in malaria vectors in Tanzania: an analysis of a 3-year, cluster-randomised controlled trial.
    Messenger LA; Matowo NS; Cross CL; Jumanne M; Portwood NM; Martin J; Lukole E; Mallya E; Mosha JF; Kaaya R; Moshi O; Pelloquin B; Fullerton K; Manjurano A; Mosha FW; Walker T; Rowland M; Kulkarni MA; Protopopoff N
    Lancet Planet Health; 2023 Aug; 7(8):e673-e683. PubMed ID: 37558348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Composition of Anopheles mosquitoes, their blood-meal hosts, and Plasmodium falciparum infection rates in three islands with disparate bed net coverage in Lake Victoria, Kenya.
    Ogola E; Villinger J; Mabuka D; Omondi D; Orindi B; Mutunga J; Owino V; Masiga DK
    Malar J; 2017 Sep; 16(1):360. PubMed ID: 28886724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods.
    Müller GC; Beier JC; Traore SF; Toure MB; Traore MM; Bah S; Doumbia S; Schlein Y
    Malar J; 2010 Sep; 9():262. PubMed ID: 20854666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated Plasmodium infection rates and high pyrethroid resistance in major malaria vectors in a forested area of Cameroon highlight challenges of malaria control.
    Ndo C; Kopya E; Donbou MA; Njiokou F; Awono-Ambene P; Wondji C
    Parasit Vectors; 2018 Mar; 11(1):157. PubMed ID: 29519247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposure to deltamethrin affects development of Plasmodium falciparum inside wild pyrethroid resistant Anopheles gambiae s.s. mosquitoes in Uganda.
    Kristan M; Lines J; Nuwa A; Ntege C; Meek SR; Abeku TA
    Parasit Vectors; 2016 Feb; 9():100. PubMed ID: 26911550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can the performance of pyrethroid-chlorfenapyr nets be reduced when combined with pyrethroid-piperonyl butoxide (PBO) nets?
    Syme T; Nounagnon J; N'dombidjé B; Gbegbo M; Agbevo A; Ahoga J; Ngufor C
    Malar J; 2023 Jul; 22(1):214. PubMed ID: 37480030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential impact of dual-active ingredient long-lasting insecticidal nets on primary malaria vectors: a secondary analysis of a 3-year, single-blind, cluster-randomised controlled trial in rural Tanzania.
    Matowo NS; Kulkarni MA; Messenger LA; Jumanne M; Martin J; Mallya E; Lukole E; Mosha JF; Moshi O; Shirima B; Kaaya R; Rowland M; Manjurano A; Mosha FW; Protopopoff N
    Lancet Planet Health; 2023 May; 7(5):e370-e380. PubMed ID: 37164513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin.
    Ngufor C; N'Guessan R; Boko P; Odjo A; Vigninou E; Asidi A; Akogbeto M; Rowland M
    Malar J; 2011 Nov; 10():343. PubMed ID: 22087506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-intervention characteristics of the mosquito species in Benin in preparation for a randomized controlled trial assessing the efficacy of dual active-ingredient long-lasting insecticidal nets for controlling insecticide-resistant malaria vectors.
    Yovogan B; Sovi A; Padonou GG; Adoha CJ; Akinro B; Chitou S; Accrombessi M; Dangbénon E; Akpovi H; Messenger LA; Ossè R; Hounto AO; Cook J; Kleinschmidt I; Ngufor C; Rowland M; Protopopoff N; Akogbéto MC
    PLoS One; 2021; 16(5):e0251742. PubMed ID: 34014982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa.
    Müller GC; Beier JC; Traore SF; Toure MB; Traore MM; Bah S; Doumbia S; Schlein Y
    Malar J; 2010 Jul; 9():210. PubMed ID: 20663142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ITN mixtures of chlorfenapyr (Pyrrole) and alphacypermethrin (Pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus.
    Oxborough RM; Kitau J; Matowo J; Feston E; Mndeme R; Mosha FW; Rowland MW
    PLoS One; 2013; 8(2):e55781. PubMed ID: 23409042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles.
    Adams KL; Selland EK; Willett BC; Carew JW; Vidoudez C; Singh N; Catteruccia F
    PLoS Pathog; 2023 Jun; 19(6):e1011448. PubMed ID: 37339122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the potential impact of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria.
    Fraser KJ; Mwandigha L; Traore SF; Traore MM; Doumbia S; Junnila A; Revay E; Beier JC; Marshall JM; Ghani AC; Müller G
    Malar J; 2021 Mar; 20(1):151. PubMed ID: 33731111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission.
    Paton DG; Childs LM; Itoe MA; Holmdahl IE; Buckee CO; Catteruccia F
    Nature; 2019 Mar; 567(7747):239-243. PubMed ID: 30814727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feeding rates of malaria vectors from a prototype attractive sugar bait station in Western Province, Zambia: results of an entomological validation study.
    Chanda J; Wagman J; Chanda B; Kaniki T; Ng'andu M; Muyabe R; Mwenya M; Sakala J; Miller J; Mwaanga G; Simubali L; Mburu MM; Simulundu E; Mungo A; Fraser K; Mwandigha L; Ashton R; Yukich J; Harris AF; Burkot TR; Orange E; Littrell M; Entwistle J
    Malar J; 2023 Mar; 22(1):70. PubMed ID: 36855105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.