These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37946506)

  • 1. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II).
    Zhang Z; Ren J; Liang J; Xu X; Zhao L; Qiu H; Li H; Cao X
    Environ Sci Technol; 2023 Dec; 57(50):21370-21381. PubMed ID: 37946506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of iron (hydr)oxides and Cr(VI) retention mechanisms in soils from tropical and subtropical areas of China.
    Wang W; Yang L; Gao D; Yu M; Jiang S; Li J; Zhang J; Feng X; Tan W; Liu F; Yin M; Yin H
    J Hazard Mater; 2024 Mar; 465():133107. PubMed ID: 38043424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation.
    Ke Q; Ren J; Feng K; Zhang Z; Huang W; Xu X; Zhao L; Qiu H; Cao X
    Environ Pollut; 2024 Jun; 350():124014. PubMed ID: 38642792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional transfer of Cr(VI) co-precipitated with ferrihydrite containing silicate and its redistribution and retention during aging.
    Zhu L; Fu F; Tang B
    Sci Total Environ; 2019 Dec; 696():133966. PubMed ID: 31461693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II).
    Hu Y; Xue Q; Tang J; Fan X; Chen H
    Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C; Ari C; Keskin S
    Water Res; 2015 Jun; 76():66-75. PubMed ID: 25792435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals.
    Zhao Y; Moore OW; Xiao KQ; Otero-Fariña A; Banwart SA; Wu FC; Peacock CL
    Environ Sci Technol; 2023 Nov; 57(45):17501-17510. PubMed ID: 37921659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ; Ginder-Vogel M
    J Environ Qual; 2018 Jan; 47(1):139-146. PubMed ID: 29415106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter.
    Chen C; Dong Y; Thompson A
    Environ Sci Technol; 2023 Jul; 57(29):10696-10707. PubMed ID: 37449758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.