These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 37946674)

  • 21. Advances in Microfluidic Technologies in Organoid Research.
    Liu H; Gan Z; Qin X; Wang Y; Qin J
    Adv Healthc Mater; 2024 Aug; 13(21):e2302686. PubMed ID: 38134345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro.
    Tan ML; Ling L; Fischbach C
    Adv Drug Deliv Rev; 2021 Sep; 176():113852. PubMed ID: 34197895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments.
    Guimarães CF; Gasperini L; Reis RL
    Adv Exp Med Biol; 2022; 1379():205-230. PubMed ID: 35760993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioprinting of in vitro tumor models for personalized cancer treatment: a review.
    Mao S; Pang Y; Liu T; Shao Y; He J; Yang H; Mao Y; Sun W
    Biofabrication; 2020 Jul; 12(4):042001. PubMed ID: 32470967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing Liver Microphysiological Systems for Biomedical Applications.
    Wang J; Wu X; Zhao J; Ren H; Zhao Y
    Adv Healthc Mater; 2024 Aug; 13(21):e2302217. PubMed ID: 37983733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Bioprinting: An Important Tool for Tumor Microenvironment Research.
    Li Y; Liu J; Xu S; Wang J
    Int J Nanomedicine; 2023; 18():8039-8057. PubMed ID: 38164264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics.
    Hammel JH; Zatorski JM; Cook SR; Pompano RR; Munson JM
    Adv Drug Deliv Rev; 2022 Mar; 182():114111. PubMed ID: 35031388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review on biofabrication and applications of heterogeneous tumor models.
    Liu T; Yao R; Pang Y; Sun W
    J Tissue Eng Regen Med; 2019 Nov; 13(11):2101-2120. PubMed ID: 31359625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review.
    Yu J; Zhang Y; Ran R; Kong Z; Zhao D; Zhao W; Yang Y; Gao L; Zhang Z
    Int J Nanomedicine; 2024; 19():6547-6575. PubMed ID: 38957180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable three-dimensional engineered prostate cancer tissues for in vitro recapitulation of heterogeneous in vivo prostate tumor stiffness.
    Habbit NL; Anbiah B; Anderson L; Suresh J; Hassani I; Eggert M; Brannen A; Davis J; Tian Y; Prabhakarpandian B; Panizzi P; Arnold RD; Lipke EA
    Acta Biomater; 2022 Jul; 147():73-90. PubMed ID: 35551999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models.
    Carvalho MR; Lima D; Reis RL; Correlo VM; Oliveira JM
    Trends Biotechnol; 2015 Nov; 33(11):667-678. PubMed ID: 26603572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microengineering in cardiovascular research: new developments and translational applications.
    Chan JM; Wong KH; Richards AM; Drum CL
    Cardiovasc Res; 2015 Apr; 106(1):9-18. PubMed ID: 25691539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heart-on-a-chip systems: disease modeling and drug screening applications.
    Butler D; Reyes DR
    Lab Chip; 2024 Feb; 24(5):1494-1528. PubMed ID: 38318723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can tissue engineering concepts advance tumor biology research?
    Hutmacher DW; Loessner D; Rizzi S; Kaplan DL; Mooney DJ; Clements JA
    Trends Biotechnol; 2010 Mar; 28(3):125-33. PubMed ID: 20056286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research.
    Regmi S; Poudel C; Adhikari R; Luo KQ
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.
    DelNero P; Song YH; Fischbach C
    Biomed Microdevices; 2013 Aug; 15(4):583-593. PubMed ID: 23559404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tooth regeneration: challenges and opportunities for biomedical material research.
    Du C; Moradian-Oldak J
    Biomed Mater; 2006 Mar; 1(1):R10-7. PubMed ID: 18458377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
    Seo BR; DelNero P; Fischbach C
    Adv Drug Deliv Rev; 2014 Apr; 69-70():205-216. PubMed ID: 24309015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.