These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37946691)
21. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Cardoso RM; Mendonça DMH; Silva WP; Silva MNT; Nossol E; da Silva RAB; Richter EM; Muñoz RAA Anal Chim Acta; 2018 Nov; 1033():49-57. PubMed ID: 30172331 [TBL] [Abstract][Full Text] [Related]
22. Highly conductive graphene/carbon black screen printing inks for flexible electronics. Liu L; Shen Z; Zhang X; Ma H J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional printing of freeform helical microstructures: a review. Farahani RD; Chizari K; Therriault D Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812 [TBL] [Abstract][Full Text] [Related]
24. Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection. Hassan K; Tung TT; Stanley N; Yap PL; Farivar F; Rastin H; Nine MJ; Losic D Nanoscale; 2021 Mar; 13(10):5356-5368. PubMed ID: 33660735 [TBL] [Abstract][Full Text] [Related]
25. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415 [TBL] [Abstract][Full Text] [Related]
26. A simple, low-cost conductive composite material for 3D printing of electronic sensors. Leigh SJ; Bradley RJ; Purssell CP; Billson DR; Hutchins DA PLoS One; 2012; 7(11):e49365. PubMed ID: 23185319 [TBL] [Abstract][Full Text] [Related]
27. Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties. Zhang Q; Zhang F; Xu X; Zhou C; Lin D ACS Nano; 2018 Feb; 12(2):1096-1106. PubMed ID: 29328672 [TBL] [Abstract][Full Text] [Related]
28. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology. Wang C; Hong GY; Li KM; Young HT Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29137148 [TBL] [Abstract][Full Text] [Related]
29. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions. Ye S; Williams NX; Franklin A J Electron Mater; 2022 Apr; 51(4):1583-1590. PubMed ID: 35991773 [TBL] [Abstract][Full Text] [Related]
30. Aerosol jet printed p- and n-type electrolyte-gated transistors with a variety of electrode materials: exploring practical routes to printed electronics. Hong K; Kim SH; Mahajan A; Frisbie CD ACS Appl Mater Interfaces; 2014 Nov; 6(21):18704-11. PubMed ID: 25323010 [TBL] [Abstract][Full Text] [Related]
31. All-Carbon Thin-Film Transistors Using Water-Only Printing. Lu S; Smith BN; Meikle H; Therien MJ; Franklin AD Nano Lett; 2023 Mar; 23(6):2100-2106. PubMed ID: 36853199 [TBL] [Abstract][Full Text] [Related]
32. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Rocha RG; Cardoso RM; Zambiazi PJ; Castro SVF; Ferraz TVB; Aparecido GO; Bonacin JA; Munoz RAA; Richter EM Anal Chim Acta; 2020 Oct; 1132():1-9. PubMed ID: 32980098 [TBL] [Abstract][Full Text] [Related]
33. 3D Printed Graphene Electrodes' Electrochemical Activation. Browne MP; Novotný F; Sofer Z; Pumera M ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834 [TBL] [Abstract][Full Text] [Related]
34. Laminated Object Manufacturing of 3D-Printed Laser-Induced Graphene Foams. Luong DX; Subramanian AK; Silva GAL; Yoon J; Cofer S; Yang K; Owuor PS; Wang T; Wang Z; Lou J; Ajayan PM; Tour JM Adv Mater; 2018 Jul; 30(28):e1707416. PubMed ID: 29845669 [TBL] [Abstract][Full Text] [Related]
35. Aerosol Jet Printed 3D Electrochemical Sensors for Protein Detection. Cantù E; Tonello S; Abate G; Uberti D; Sardini E; Serpelloni M Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388817 [TBL] [Abstract][Full Text] [Related]
36. Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes for Foldable Electronics-Related Applications. Lee H; Kim Y; Kim J; Moon SY; Lee JU Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501688 [TBL] [Abstract][Full Text] [Related]
37. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications. Wu Y; An C; Guo Y Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629973 [TBL] [Abstract][Full Text] [Related]
38. Fractal Design for Advancing the Performance of Chemoresistive Sensors. Hassan K; Tung TT; Yap PL; Rastin H; Stanley N; Nine MJ; Losic D ACS Sens; 2021 Oct; 6(10):3685-3695. PubMed ID: 34644058 [TBL] [Abstract][Full Text] [Related]
39. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide. Ma J; Wang P; Dong L; Ruan Y; Lu H J Colloid Interface Sci; 2019 Jan; 534():12-19. PubMed ID: 30196197 [TBL] [Abstract][Full Text] [Related]