These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37946699)
21. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. Wang J; Wang K; Xu Y ACS Nano; 2021 Dec; 15(12):19026-19053. PubMed ID: 34842431 [TBL] [Abstract][Full Text] [Related]
22. Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective. Ma T; Ren X; Hu L; Teng W; Wang X; Wu G; Liu J; Nan D; Yu X Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080527 [TBL] [Abstract][Full Text] [Related]
23. Metal-organic frameworks for high-performance cathodes in batteries. Lee J; Choi I; Kim E; Park J; Nam KW iScience; 2024 Jul; 27(7):110211. PubMed ID: 39021798 [TBL] [Abstract][Full Text] [Related]
24. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
25. Advanced Nonflammable Organic Electrolyte Promises Safer Li-Metal Batteries: From Solvation Structure Perspectives. Yuan S; Ding K; Zeng X; Bin D; Zhang Y; Dong P; Wang Y Adv Mater; 2023 Mar; 35(13):e2206228. PubMed ID: 36004772 [TBL] [Abstract][Full Text] [Related]
26. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges. Hu Y; Yu L; Meng T; Zhou S; Sui X; Hu X Chem Asian J; 2022 Dec; 17(23):e202200794. PubMed ID: 36177983 [TBL] [Abstract][Full Text] [Related]
27. High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. Yao M; Yu T; Ruan Q; Chen Q; Zhang H; Zhang S ACS Appl Mater Interfaces; 2021 Oct; 13(39):47163-47173. PubMed ID: 34555902 [TBL] [Abstract][Full Text] [Related]
28. Porous Metal-Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium-Ion Batteries. Shimizu T; Wang H; Matsumura D; Mitsuhara K; Ohta T; Yoshikawa H ChemSusChem; 2020 May; 13(9):2256-2263. PubMed ID: 31994841 [TBL] [Abstract][Full Text] [Related]
29. Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks. Shen L; Wu HB; Liu F; Brosmer JL; Shen G; Wang X; Zink JI; Xiao Q; Cai M; Wang G; Lu Y; Dunn B Adv Mater; 2018 Jun; 30(23):e1707476. PubMed ID: 29707850 [TBL] [Abstract][Full Text] [Related]
30. Stepped Channels Integrated Lithium-Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal-Organic Frameworks. Gao GK; Wang YR; Wang SB; Yang RX; Chen Y; Zhang Y; Jiang C; Wei MJ; Ma H; Lan YQ Angew Chem Int Ed Engl; 2021 Apr; 60(18):10147-10154. PubMed ID: 33511739 [TBL] [Abstract][Full Text] [Related]
31. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review. Chattopadhyay J; Pathak TS; Santos DMF Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835955 [TBL] [Abstract][Full Text] [Related]
32. Engineering Functionalized 2D Metal-Organic Frameworks Nanosheets with Fast Li Xu L; Xiao X; Tu H; Zhu F; Wang J; Liu H; Huang W; Deng W; Hou H; Liu T; Ji X; Amine K; Zou G Adv Mater; 2023 Sep; 35(38):e2303193. PubMed ID: 37267091 [TBL] [Abstract][Full Text] [Related]
33. Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. Qian Y; Kang Y; Hu S; Shi Q; Chen Q; Tang X; Xiao Y; Zhao H; Luo G; Xu K; Deng Y ACS Appl Mater Interfaces; 2020 Mar; 12(9):10443-10451. PubMed ID: 32040291 [TBL] [Abstract][Full Text] [Related]
34. Entropy-Driven Liquid Electrolytes for Lithium Batteries. Wang Q; Zhao C; Yao Z; Wang J; Wu F; Kumar SGH; Ganapathy S; Eustace S; Bai X; Li B; Lu J; Wagemaker M Adv Mater; 2023 Apr; 35(17):e2210677. PubMed ID: 36718916 [TBL] [Abstract][Full Text] [Related]
35. Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li Xu Y; Zhao R; Fang J; Liang Z; Gao L; Bian J; Zhu J; Zhao Y Front Chem; 2022; 10():1013965. PubMed ID: 36262340 [TBL] [Abstract][Full Text] [Related]
36. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage. Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456 [TBL] [Abstract][Full Text] [Related]
37. Constructing Robust Electrode/Electrolyte Interphases to Enable Wide Temperature Applications of Lithium-Ion Batteries. Liu B; Li Q; Engelhard MH; He Y; Zhang X; Mei D; Wang C; Zhang JG; Xu W ACS Appl Mater Interfaces; 2019 Jun; 11(24):21496-21505. PubMed ID: 31120235 [TBL] [Abstract][Full Text] [Related]
38. Suspension electrolyte with modified Li Kim MS; Zhang Z; Rudnicki PE; Yu Z; Wang J; Wang H; Oyakhire ST; Chen Y; Kim SC; Zhang W; Boyle DT; Kong X; Xu R; Huang Z; Huang W; Bent SF; Wang LW; Qin J; Bao Z; Cui Y Nat Mater; 2022 Apr; 21(4):445-454. PubMed ID: 35039645 [TBL] [Abstract][Full Text] [Related]
39. The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries. Zhu JP; Wang XH; Zuo XX R Soc Open Sci; 2019 Jul; 6(7):190634. PubMed ID: 31417758 [TBL] [Abstract][Full Text] [Related]
40. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. Wang T; Chen S; Chen KJ Chem Rec; 2023 Jun; 23(6):e202300006. PubMed ID: 36942948 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]