These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37947361)

  • 1. Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives.
    van Westerveld L; Es Sayed J; de Graaf M; Hofman AH; Kamperman M; Parisi D
    Soft Matter; 2023 Nov; 19(45):8832-8848. PubMed ID: 37947361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives.
    van Westerveld L; Pelras T; Hofman AH; Loos K; Kamperman M; Es Sayed J
    Macromolecules; 2024 Jan; 57(2):652-663. PubMed ID: 38283122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates.
    Yu B; Rauscher PM; Jackson NE; Rumyantsev AM; de Pablo JJ
    ACS Macro Lett; 2020 Sep; 9(9):1318-1324. PubMed ID: 35638633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and rheology of polyelectrolyte complex coacervates.
    Marciel AB; Srivastava S; Tirrell MV
    Soft Matter; 2018 Mar; 14(13):2454-2464. PubMed ID: 29376531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates.
    Galland P; Iqbal MH; Favier D; Legros M; Schaaf P; Boulmedais F; Vahdati M
    J Colloid Interface Sci; 2024 May; 661():196-206. PubMed ID: 38301458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations, structure, and size inside coacervates.
    Muthukumar M
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):79. PubMed ID: 37682368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates
    Morin FJ; Puppo ML; Laaser JE
    Soft Matter; 2021 Feb; 17(5):1223-1231. PubMed ID: 33331383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications.
    Kwant AN; Es Sayed JS; Kamperman M; Burgess JK; Slebos DJ; Pouwels SD
    Adv Healthc Mater; 2024 Oct; ():e2402340. PubMed ID: 39352099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates.
    Huang J; Laaser JE
    ACS Macro Lett; 2021 Aug; 10(8):1029-1034. PubMed ID: 35549116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates.
    Kayitmazer AB; Comert F; Winter HH; Messersmith PB
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of comb architecture on complex coacervation.
    Johnston BM; Johnston CW; Letteri RA; Lytle TK; Sing CE; Emrick T; Perry SL
    Org Biomol Chem; 2017 Sep; 15(36):7630-7642. PubMed ID: 28869254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion-polycation coacervates in salted water.
    Lin K; Jing B; Zhu Y
    Soft Matter; 2021 Oct; 17(39):8937-8949. PubMed ID: 34549769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio.
    Wang X; Lee J; Wang YW; Huang Q
    Biomacromolecules; 2007 Mar; 8(3):992-7. PubMed ID: 17305391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte-micelle coacervates: intrapolymer-dominant vs. interpolymer-dominant association, solute uptake and rheological properties.
    Zhao M; Wang C; Jiang H; Dawadi MB; Vogt BD; Modarelli DA; Zacharia NS
    Soft Matter; 2019 Apr; 15(14):3043-3054. PubMed ID: 30901008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of networks in mixtures of hydrophobically modified telechelic multiarm polymers and oil in water microemulsions.
    de Molina PM; Herfurth C; Laschewsky A; Gradzielski M
    Langmuir; 2012 Nov; 28(45):15994-6006. PubMed ID: 23075139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting behavior of polyelectrolyte complex coacervates on solid surfaces.
    Balzer C; Zhang P; Wang ZG
    Soft Matter; 2022 Aug; 18(34):6326-6339. PubMed ID: 35976083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates.
    Coria-Oriundo LL; Debais G; Apuzzo E; Herrera SE; CeolĂ­n M; Azzaroni O; Battaglini F; Tagliazucchi M
    J Phys Chem B; 2023 Sep; 127(35):7636-7647. PubMed ID: 37639479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protected Poly(3-sulfopropyl methacrylate) Copolymers: Synthesis, Stability, and Orthogonal Deprotection.
    Hofman AH; Pedone M; Kamperman M
    ACS Polym Au; 2022 Jun; 2(3):169-180. PubMed ID: 35698473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion.
    Priftis D; Farina R; Tirrell M
    Langmuir; 2012 Jun; 28(23):8721-9. PubMed ID: 22578030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sodium chloride on the thermodynamic, rheological, and microstructural properties of field pea protein isolate/chitosan complex coacervates.
    Zhang Q; Jeganathan B; Dong H; Chen L; Vasanthan T
    Food Chem; 2021 May; 344():128569. PubMed ID: 33280960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.