These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37947472)
21. Monte Carlo modelling of radiotherapy kV x-ray units. Verhaegen F; Nahum AE; Van de Putte S; Namito Y Phys Med Biol; 1999 Jul; 44(7):1767-89. PubMed ID: 10442712 [TBL] [Abstract][Full Text] [Related]
22. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization. Lillaney P; Shin M; Conolly SM; Fahrig R Med Phys; 2012 Sep; 39(9):5567-83. PubMed ID: 22957623 [TBL] [Abstract][Full Text] [Related]
23. Design of TiO_{2} nanotube based X-ray tube with single focusing electrode. Alivov Y; Feng J; Molloi S J Xray Sci Technol; 2013; 21(4):567-77. PubMed ID: 24191993 [TBL] [Abstract][Full Text] [Related]
24. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging. Dong X; Niu T; Jia X; Zhu L Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629 [TBL] [Abstract][Full Text] [Related]
25. A novel electron source for a compact x-ray tube for microbeam radiotherapy with very high dose rates. Matejcek C; Winter J; Aulenbacher K; Dimroth A; Natour G; Bartzsch S Phys Med; 2023 Feb; 106():102532. PubMed ID: 36652809 [TBL] [Abstract][Full Text] [Related]
26. Characterization of an x-ray source with a partitioned diamond-tungsten target for electronic brachytherapy with 3D beam directionality. Badali DS; Plateau GR; Ellenor CW; Ku CY; Vatahov P; Esterline J; Wilfley BP; Mitchell CR; Fishman K; Funk T Phys Med Biol; 2019 Dec; 64(24):245007. PubMed ID: 31652422 [TBL] [Abstract][Full Text] [Related]
27. Development of a high resolution x-ray inspection system using a carbon nanotube based miniature x-ray tube. Kim HN; Jeong HY; Lee JH; Cho SO Rev Sci Instrum; 2020 Apr; 91(4):043703. PubMed ID: 32357756 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of carbon nanotube x-ray source array for stationary head computed tomography. Spronk D; Luo Y; Inscoe CR; Lee YZ; Lu J; Zhou O Med Phys; 2021 Mar; 48(3):1089-1099. PubMed ID: 33382470 [TBL] [Abstract][Full Text] [Related]
29. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer. Kim HN; Lee JH; Park HB; Kim HJ; Cho SO Med Phys; 2018 Jan; 45(1):29-36. PubMed ID: 29106708 [TBL] [Abstract][Full Text] [Related]
30. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study. Shan J; Tucker AW; Lee YZ; Heath MD; Wang X; Foos DH; Lu J; Zhou O Phys Med Biol; 2015 Jan; 60(1):81-100. PubMed ID: 25478786 [TBL] [Abstract][Full Text] [Related]
31. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode. Hwang JW; Mo CB; Jung HK; Ryu S; Hong SH J Nanosci Nanotechnol; 2013 Nov; 13(11):7386-90. PubMed ID: 24245260 [TBL] [Abstract][Full Text] [Related]
32. Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research. Rezaee M; Iordachita I; Wong JW Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33780922 [TBL] [Abstract][Full Text] [Related]
33. Development of an X-ray tube with two selective targets modulated by a magnetic field. Jin L; Jia W; Hei D; Zhang X; Zhao L Rev Sci Instrum; 2019 Aug; 90(8):083105. PubMed ID: 31472600 [TBL] [Abstract][Full Text] [Related]
34. Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube. Winter J; Galek M; Matejcek C; Wilkens JJ; Aulenbacher K; Combs SE; Bartzsch S Phys Imaging Radiat Oncol; 2020 Apr; 14():74-81. PubMed ID: 33458318 [TBL] [Abstract][Full Text] [Related]
35. Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone. Baines J; Zawlodzka S; Markwell T; Chan M Med Phys; 2018 Feb; 45(2):926-933. PubMed ID: 29235131 [TBL] [Abstract][Full Text] [Related]
36. A model for the energy and angular distribution of x rays emitted from an x-ray tube. Part I. Bremsstrahlung production. Omar A; Andreo P; Poludniowski G Med Phys; 2020 Oct; 47(10):4763-4774. PubMed ID: 32609887 [TBL] [Abstract][Full Text] [Related]
37. A model for the energy and angular distribution of x rays emitted from an x-ray tube. Part II. Validation of x-ray spectra from 20 to 300 kV. Omar A; Andreo P; Poludniowski G Med Phys; 2020 Sep; 47(9):4005-4019. PubMed ID: 32593216 [TBL] [Abstract][Full Text] [Related]
38. Application of MLP neural network to predict X-ray spectrum from tube voltage, filter material, and filter thickness used in medical imaging systems. He J; Zhanjian C; Zheng J; Shentong M; Daoud MS; Hongyu Z; Eftekhari-Zadeh E; Guoqiang X PLoS One; 2023; 18(12):e0294080. PubMed ID: 38060542 [TBL] [Abstract][Full Text] [Related]
39. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers. Teymurazyan A; Pang G Med Phys; 2012 Mar; 39(3):1518-29. PubMed ID: 22380384 [TBL] [Abstract][Full Text] [Related]
40. Study of the Microfocus X-Ray Tube Based on a Point-Like Target Used for Micro-Computed Tomography. Zhou R; Zhou X; Li X; Cai Y; Liu F PLoS One; 2016; 11(6):e0156224. PubMed ID: 27249559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]