These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 37947688)
1. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. You L; Liu B; Hua H; Jiang H; Yin C; Wen F Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947688 [TBL] [Abstract][Full Text] [Related]
2. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Dang ZM; Zheng MS; Zha JW Small; 2016 Apr; 12(13):1688-701. PubMed ID: 26865507 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Energy Storage Performance in Polymer Composites Using High-Throughput Stochastic Breakdown Simulation and Machine Learning. Yue D; Feng Y; Liu XX; Yin JH; Zhang WC; Guo H; Su B; Lei QQ Adv Sci (Weinh); 2022 Jun; 9(17):e2105773. PubMed ID: 35398997 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Energy Storage Performance of Polymer/Ceramic/Metal Composites by Increase of Thermal Conductivity and Coulomb-Blockade Effect. Ji SY; Jung HB; Kim MK; Lim JH; Kim JY; Ryu J; Jeong DY ACS Appl Mater Interfaces; 2021 Jun; 13(23):27343-27352. PubMed ID: 34081442 [TBL] [Abstract][Full Text] [Related]
5. Particle size effect of BaTiO Bi M; Hao Y; Zhang J; Lei M; Bi K Nanoscale; 2017 Nov; 9(42):16386-16395. PubMed ID: 29053167 [TBL] [Abstract][Full Text] [Related]
6. Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb Zou K; He C; Yu Y; Huang J; Fan Z; Lu Y; Huang H; Zhang X; Zhang Q; He Y ACS Appl Mater Interfaces; 2020 Mar; 12(11):12847-12856. PubMed ID: 32084310 [TBL] [Abstract][Full Text] [Related]
7. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions. Shehzad K; Xu Y; Gao C; Li H; Dang ZM; Hasan T; Luo J; Duan X ACS Appl Mater Interfaces; 2017 Mar; 9(8):7591-7600. PubMed ID: 28155272 [TBL] [Abstract][Full Text] [Related]
8. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Prateek ; Thakur VK; Gupta RK Chem Rev; 2016 Apr; 116(7):4260-317. PubMed ID: 27040315 [TBL] [Abstract][Full Text] [Related]
9. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Harito C; Bavykin DV; Yuliarto B; Dipojono HK; Walsh FC Nanoscale; 2019 Mar; 11(11):4653-4682. PubMed ID: 30840003 [TBL] [Abstract][Full Text] [Related]
10. Polymer Matrix Nanocomposites with 1D Ceramic Nanofillers for Energy Storage Capacitor Applications. Zhang H; Marwat MA; Xie B; Ashtar M; Liu K; Zhu Y; Zhang L; Fan P; Samart C; Ye ZG ACS Appl Mater Interfaces; 2020 Jan; 12(1):1-37. PubMed ID: 31746587 [TBL] [Abstract][Full Text] [Related]
11. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. Zhu M; Huang X; Yang K; Zhai X; Zhang J; He J; Jiang P ACS Appl Mater Interfaces; 2014 Nov; 6(22):19644-54. PubMed ID: 25365240 [TBL] [Abstract][Full Text] [Related]
12. Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers. Li H; Ai D; Ren L; Yao B; Han Z; Shen Z; Wang J; Chen LQ; Wang Q Adv Mater; 2019 Jun; 31(23):e1900875. PubMed ID: 30977229 [TBL] [Abstract][Full Text] [Related]
13. Ultrahigh Energy Storage Performance of Layered Polymer Nanocomposites over a Broad Temperature Range. Wang P; Yao L; Pan Z; Shi S; Yu J; Zhou Y; Liu Y; Liu J; Chi Q; Zhai J; Wang Q Adv Mater; 2021 Oct; 33(42):e2103338. PubMed ID: 34477248 [TBL] [Abstract][Full Text] [Related]
14. Significant Improvements in Dielectric Constant and Energy Density of Ferroelectric Polymer Nanocomposites Enabled by Ultralow Contents of Nanofillers. Li L; Cheng J; Cheng Y; Han T; Liu Y; Zhou Y; Zhao G; Zhao Y; Xiong C; Dong L; Wang Q Adv Mater; 2021 Sep; 33(35):e2102392. PubMed ID: 34302399 [TBL] [Abstract][Full Text] [Related]
15. Improved Energy Storage Performance of Linear Dielectric Polymer Nanodielectrics with Polydopamine coated BN Nanosheets. Wang J; Xie Y; Liu J; Zhang Z; Zhuang Q; Kong J Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961274 [TBL] [Abstract][Full Text] [Related]
16. Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO Zhang J; Ma J; Zhang L; Zong C; Xu A; Zhang Y; Geng B; Zhang S RSC Adv; 2020 Feb; 10(12):7065-7072. PubMed ID: 35493868 [TBL] [Abstract][Full Text] [Related]
17. Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Yang Z; Yue D; Yao Y; Li J; Chi Q; Chen Q; Min D; Feng Y Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335491 [TBL] [Abstract][Full Text] [Related]
18. Two-Dimensional Fillers Induced Superior Electrostatic Energy Storage Performance in Trilayered Architecture Nanocomposites. Cheng Y; Pan Z; Bai H; Chen H; Yao L; Ding X; Shi S; Liu J; Xie Z; Xu J; Zhai J ACS Appl Mater Interfaces; 2022 Feb; 14(6):8448-8457. PubMed ID: 35129328 [TBL] [Abstract][Full Text] [Related]
19. Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage. Zhang G; Li Q; Allahyarov E; Li Y; Zhu L ACS Appl Mater Interfaces; 2021 Aug; 13(32):37939-37960. PubMed ID: 34370438 [TBL] [Abstract][Full Text] [Related]
20. Core-Shell Engineering of Conductive Fillers toward Enhanced Dielectric Properties: A Universal Polarization Mechanism in Polymer Conductor Composites. Zhou W; Cao G; Yuan M; Zhong S; Wang Y; Liu X; Cao D; Peng W; Liu J; Wang G; Dang ZM; Li B Adv Mater; 2023 Jan; 35(2):e2207829. PubMed ID: 36349800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]