These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
747 related articles for article (PubMed ID: 3794773)
21. Visually induced plasticity of postsaccadic ocular drift in normal humans. Kapoula Z; Optican LM; Robinson DA J Neurophysiol; 1989 May; 61(5):879-91. PubMed ID: 2723732 [TBL] [Abstract][Full Text] [Related]
22. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Goldberg ME; Bruce CJ J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128 [TBL] [Abstract][Full Text] [Related]
23. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. Schall JD J Neurophysiol; 1991 Aug; 66(2):530-58. PubMed ID: 1774585 [TBL] [Abstract][Full Text] [Related]
25. Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. Evinger C; Kaneko CR; Fuchs AF J Neurophysiol; 1982 May; 47(5):827-44. PubMed ID: 7086471 [TBL] [Abstract][Full Text] [Related]
26. Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses. Kawano K; Shidara M; Yamane S J Neurophysiol; 1992 Mar; 67(3):680-703. PubMed ID: 1578251 [TBL] [Abstract][Full Text] [Related]
27. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Schiller PH; Sandell JH; Maunsell JH J Neurophysiol; 1987 Apr; 57(4):1033-49. PubMed ID: 3585453 [TBL] [Abstract][Full Text] [Related]
28. Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey. Scalaidhe SP; Albright TD; Rodman HR; Gross CG J Neurophysiol; 1995 Jan; 73(1):1-19. PubMed ID: 7714555 [TBL] [Abstract][Full Text] [Related]
29. Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans. Pelisson D; Prablanc C; Urquizar C J Neurophysiol; 1988 Mar; 59(3):997-1013. PubMed ID: 3367207 [TBL] [Abstract][Full Text] [Related]
30. Selective postsaccadic enhancement of motion perception. Park ASY; Schütz AC Vision Res; 2021 Nov; 188():42-50. PubMed ID: 34280816 [TBL] [Abstract][Full Text] [Related]
31. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. Funahashi S; Bruce CJ; Goldman-Rakic PS J Neurophysiol; 1991 Jun; 65(6):1464-83. PubMed ID: 1875255 [TBL] [Abstract][Full Text] [Related]
32. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. Paré M; Munoz DP J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865 [TBL] [Abstract][Full Text] [Related]
33. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. Lee D; Malpeli JG J Neurophysiol; 1998 Feb; 79(2):922-36. PubMed ID: 9463453 [TBL] [Abstract][Full Text] [Related]
34. Neuronal responses in MST reflect the post-saccadic enhancement of short-latency ocular following responses. Takemura A; Kawano K Exp Brain Res; 2006 Aug; 173(1):174-9. PubMed ID: 16807712 [TBL] [Abstract][Full Text] [Related]
35. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Walker MF; Fitzgibbon EJ; Goldberg ME J Neurophysiol; 1995 May; 73(5):1988-2003. PubMed ID: 7623096 [TBL] [Abstract][Full Text] [Related]
36. Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. Schlag-Rey M; Schlag J J Neurophysiol; 1984 Jun; 51(6):1149-74. PubMed ID: 6737026 [TBL] [Abstract][Full Text] [Related]